

A. 4176 Warbler Road P.O. Box 294049 Phelan, CA 92329

P. (760) 868-1212 F. (760) 868-2323

W. www.pphcsd.org

#### **ENGINEERING COMMITTEE MEETING AGENDA**

October 18, 2023 – 4:30 P.M. Phelan Community Center 4128 Warbler Road, Phelan, CA 92371 & Via Conference Call (see below)

#### **ENGINEERING COMMITTEE MEETING - 4:30 P.M.**

Call to Order – Pledge of Allegiance

#### Roll Call

- 1) Approval of Agenda
- 2) **Public Comment** Under this item, any member of the public wishing to directly address the Board on any item of interest that may or may not be within the subject matter jurisdiction of the Board, but not listed on the agenda, may do so at this time. However, the Board is prohibited by law from taking any action on any item not appearing on the agenda unless the action is otherwise authorized by the Brown Act. Any member of the public wishing to directly address the Board on any item listed on the agenda may do so when the item is being considered by the Board. If you wish to address the Board, please do so by the method listed on the first page of this agenda. Speakers are requested to be brief in their remarks. The Chair may limit each speaker to a comment period of five (5) minutes.
- 3) Approval of Minutes
- 4) Oeste Recharge Study Project
- 5) Discussion Regarding Water System
  - Pumps and Wells Services Agreement
  - 10-Year Tank Rehabilitation & Maintenance Service
  - Water Ouality
  - Service Line Replacement Program Update
  - Other Repairs/Replacements/Updates/Maintenance
- 6) Smithson Springs Update
- 7) State Regulations Update
- 8) Review of Current Projects
  - New Well No. 15
  - Well No. 17
  - Tank 6A
- 9) Staff Reports
- 10) Review of Action Items
  - a) Prior Meeting



# Mission Statement:

The Mission of the Phelan Piñon Hills Community Services District is to efficiently provide authorized services and maximize resources for the benefit of the community.

# Authorized Services:

- Water
- Parks & Recreation
- Street Lighting
- Solid Waste
   Recycling

- MWA Monitoring Wells Depth to Water, Water Quality, & Drill Logs
- Hot Spot Map
- Smithson Spring Flows
- Hydrographs
- Presentation on Chromium-6 to Board in October
- b) Current Meeting
- 11) Set Agenda for Next Meeting November 15, 2023
- 12) Adjournment

Pursuant to Government Code Section 54954.2(a), any request for a disability-related modification or accommodation, including auxiliary aids or services, that is sought in order to participate in the above-agendized public meeting should be directed to the District's General Manager at (760) 868-1212 at least 24 hours prior to said meeting.

Agenda materials can be viewed online at www.pphcsd.org

#### **Remote Viewing:**

To watch the livestream (view only – nonparticipating), visit our YouTube channel:

# PPHCSD YouTube Channel Link

# **Remote Participation:**

To provide public comment, or otherwise participate remotely, select the meeting you wish to attend on the District's website and then click the "Join Remote Meeting" option.

# https://www.pphcsd.org/meetings

Please be advised that remote participation and livestreaming options are provided as a courtesy to the public and technical issues could occur, resulting in delays or the inability to participate remotely or livestream. It is recommended that you attend in person to ensure you are able to participate.

#### **Written Comments:**

You may also email your public comment to the Board Secretary at <a href="mailto:ksevy@pphcsd.org">ksevy@pphcsd.org</a> by the meeting start time listed on this agenda. Your comment will be added to the record by the Board Secretary.

Please check the District website for updates on this meeting. We encourage you to sign up for our email notifications by emailing <a href="mailto:ksevy@pphcsd.org">ksevy@pphcsd.org</a> or by visiting our website and completing the signup form at <a href="mailto:www.pphcsd.org">www.pphcsd.org</a> under the "Agendas and Minutes" tab.



A. 4176 Warbler Road P.O. Box 294049 Phelan, CA 92329

P. (760) 868-1212 F. (760) 868-2323

W. www.pphcsd.org

#### SPECIAL ENGINEERING COMMITTEE MEETING MINUTES

September 20, 2023 – 4:30 p.m. Phelan Community Center 4128 Warbler Road, Phelan, CA 92371 & Remotely Via Zoom or Conference Call

**Board Members Present:** Mark Roberts, Director (Chair)

Rebecca Kujawa, President

**Staff Present:** George Cardenas, Engineering Manager

Sean Wright, Water Operations Manager

Chris Cummings, Water Operations Assistant Manager

Tony De La Rosa, Engineering Technician

Jennifer Oakes, Executive Management Analyst

Aimee Williams, Asst. Board Clerk/Administrative Specialist

#### Call to Order

Director Roberts called the meeting to order at 4:30 p.m.

#### Roll Call

All Committee Members were present at Roll Call.

# 1) Approval of Agenda

Vice President Roberts moved to approve the Agenda. President Kujawa seconded the motion. Motion passed unanimously.

- 2) **Public Comment** None
- 3) Approval of Minutes

Vice President Roberts moved to approve the Minutes. President Kujawa seconded the motion. Motion passed unanimously.

# 4) Oeste Recharge Study Project

Mr. Wright provided an update. A report was included in the packet.

## 5) Discussion Regarding Water System

- Pumps and Wells Services Agreement
- 10-Year Tank Rehabilitation & Maintenance Service
- Water Quality
- Service Line Replacement Program
- Other Repairs/Replacements/Updates/Maintenance

Mr. Wright reported on system repairs, tank maintenance, water meter replacement program, the fill station, and Tropical Storm Hillary damage throughout the District. A written report was provided in the agenda packet.

# 6) Smithson Springs Update

Mr. Wright reported that the vegetation is getting thick and overgrown; will report flows at next month's meeting.

# 7) State Regulations Update

Ms. Oakes reported that there are no new updates, just ongoing implementation of state programs.

# 8) GIS Presentation

Mr. Cardenas and Mr. De La Rosa provided a presentation on the GIS system.

# 9) Review of Current Projects

- New Well No. 15
- Well No. 17
- Tank 6A

Mr. Wright and Mr. Cardenas provided updates on the current projects.

# 10) Staff Reports

Nothing new to report; a written report is in the agenda packet.

# 11) Review of Action Items

- a) **Prior Meeting** Complete
- b) Current Meeting
  - MWA Monitoring Wells Depth to Water, Water Quality, & Drill Logs
  - Hot Spot Map
  - Smithson Spring Flows
  - Hydrographs
  - Presentation on Chromium-6 to Board in October

# 12) **Set Agenda for Next Meeting** – October 18, 2023

• Remove Item 8

#### 13) **Adjournment**

With no further business before the Committee, the meeting adjourned at 5:52 p.m.

Agenda materials can be viewed online at <a href="https://www.pphcsd.org">www.pphcsd.org</a>

# JULY 21, 2022

# OESTE MONITORING WELL CLUSTER WELL CONSTRUCTION REPORT MOJAVE WATER AGENCY PINON HILLS, CALIFORNIA

# PREPARED FOR:







# OESTE MONITORING WELL CLUSTER WELL CONSTRUCTION REPORT MOJAVE WATER AGENCY PINON HILLS, CALIFORNIA

# **TABLE OF CONTENTS**

| Section                                                   | Page |
|-----------------------------------------------------------|------|
| ACRONYMS AND ABBREVIATIONS                                | iv   |
| 1. 0 INTRODUCTION                                         | 1    |
| 2. 0 CONSTRUCTION ACTIVITIES                              | 2    |
| 2.1 PERMITTING AND UTILITY CLEARANCE                      | 2    |
| 2.2 BOREHOLE DRILLING                                     | 2    |
| 2.2.1 Drilling of ORMWP                                   | 2    |
| 2.2.2 Drilling of ORMW1                                   | 3    |
| 2.2.3 Lithologic Logging and Soil Sampling                | 4    |
| 2.3 WELL CONSTRUCTION                                     | 5    |
| 2.3.1 Monitoring Well ORMWP                               | 5    |
| 2.3.2 Monitoring Well ORMW1                               | 6    |
| 2.3.3 Surface Completion                                  |      |
| 2.4 GEOPHYSICAL LOGGING                                   | 7    |
| 2.5 WELL DEVELOPMENT AND GROUNDWATER SAMPLING             | 8    |
| 2.6 SITE CLEANUP, WELL SURVEY, AND WELL COMPLETION REPORT | 9    |
| 3. 0 REFERENCES                                           |      |

i

# TABLE OF CONTENTS (continued)

Table

# **TABLES**

| 4        | MONITORING WELL CONSTRUCTION SUMMARY              |           |
|----------|---------------------------------------------------|-----------|
| 1        |                                                   |           |
| 2        | METALS IN SOIL LEACHATE SAMPLES                   |           |
| 3        | GENERAL MINERALS AND COMMON IONS IN SOIL LEACHATE | SAMPLES   |
| 4        | SOIL PHYSICAL PROPERTIES                          |           |
| 5        | MONITORING WELL DEVELOPMENT SUMMARY               |           |
| 6        | ORMW1 GROUNDWATER QUALITY SUMMARY                 |           |
|          | <u>FIGURES</u>                                    |           |
| Figure   |                                                   |           |
| 1        | WELL SITE LOCATION MAP                            | 410-10318 |
| 2        | MONITORING WELL LOCATION DETAIL                   | 410-10319 |
| 3        | SCHEMATIC CONSTRUCTION DIAGRAM, MONITORING WELL   |           |
|          | ORMWP                                             | 710-0961  |
| 4        | SCHEMATIC CONSTRUCTION DIAGRAM, MONITORING WELL   |           |
|          | ORMW1                                             | 710-0962  |
|          | <u>APPENDICES</u>                                 |           |
| Appendix |                                                   |           |
| Α        | WELL CONSTRUCTION PERMITS                         |           |
| В        | LITHOLOGIC LOGS                                   |           |
| С        | SOIL LEACHATE SAMPLE LABORATORY REPORTS           |           |
| D        | GEOTECHNICAL LABORATORY REPORTS                   |           |
| E        | GEOPHYSICAL LOGS                                  |           |
| F        | DEVELOPMENT SUMMARY                               |           |
| G        | WATER QUALITY LABORATORY REPORT                   |           |

Н

MWA WELL CANVASSING SHEET



# TABLE OF CONTENTS (continued)

I WELL COMPLETION REPORTS SUBMITTED TO CALIFORNIA DEPARTMENT OF WATER RESOURCES

# **ACRONYMS AND ABBREVIATIONS**

ABC ABC Liovin Drilling

ARCH Air rotary casing hammer

ASTM American Society for Testing and Materials

bgs Below ground surface

H+A Hargis + Associates, Inc.

MWA Mojave Water Agency

PVC Polyvinyl chloride

the Site APN 309908101 at the west end of Cayucos Drive, Piñon Hills, California

SPLP Synthetic Precipitation Leaching Procedure



# OESTE MONITORING WELL CLUSTER WELL CONSTRUCTION REPORT MOJAVE WATER AGENCY PINON HILLS, CALIFORNIA

## 1.0 INTRODUCTION

This Oeste Monitoring Well Construction Report has been prepared by Hargis + Associates, Inc. (H+A) on behalf of the Mojave Water Agency (MWA), for the monitoring well cluster located on parcel APN 309908101 at the west end of Cayucos Drive, Piñon Hills, California (the Site) (Figure 1). Activities described in this report were conducted in accordance with the MWA approved scope of services for monitoring well construction management (H+A, 2021).

The MWA parcel of land adjacent to the California Aqueduct near Phelan, California is intended to be used as a future recharge basin site to meet water delivery obligations to the Oeste Subarea. Existing hydrogeologic information in the area is sparse, and the Oeste monitoring well cluster was installed to fill in data gaps to aid in assessing the feasibility of the proposed aquifer recharge activities; measure and track recharge activities; and provide a long-term monitoring point for the Oeste Subarea. The cluster includes a regional water table monitoring well (ORMW1) and a potential perched zone monitoring well (ORMWP). The well cluster provides valuable data related to subsurface lithologic conditions, groundwater levels, and groundwater quality.

H+A was responsible for providing construction management during the drilling and construction of the wells to ensure that drilling-related activities were conducted in accordance with Technical Specifications specified in the driller contract documents (MWA, 2021). MWA contracted directly with the drilling contractor, ABC Liovin Drilling (ABC).

# HARGIS+ASSOCIATES, INC.

# 2.0 CONSTRUCTION ACTIVITIES

The following sections describe the general construction activities by task. The Technical Specifications provide a general description of well drilling, well construction, and well development procedures. This report describes the preparation, drilling, installation, development, and Site clean-up for the monitoring wells.

# 2.1 PERMITTING AND UTILITY CLEARANCE

Permitting requirements included obtaining County of San Bernardino well construction permits. Permit applications were prepared and submitted by ABC, with review by H+A and MWA. Approved well permits are provided in Appendix A.

Prior to mobilization, H+A conducted a Site visit with MWA and ABC to review rig and drilling footprints and well locations which were cleared for underground utilities by Underground Service Alert. The two well locations located at the northeast corner of the Site were designated with a separation of approximately 33 feet between wells (Figure 2). Well locations were cleared down to approximately 6 to 8 feet below ground surface (bgs) using air-knife excavation.

# 2.2 BOREHOLE DRILLING

The following sections summarize details of borehole drilling. Monitoring well ORMWP was drilled during the period December 20, 2021 through January 3, 2022. Monitoring well ORMW1 was drilled during the period January 31, 2022 through February 8, 2022.

# 2.2.1 Drilling of ORMWP

The borehole for monitoring well ORMWP was advanced using sonic drilling methods. Temporary steel casing was driven into the formation using a telescoping approach, with 10-inch diameter casing to 100 feet bgs, 8-inch diameter casing to 320 feet bgs, 6-inch diameter casing to 375 feet bgs, and 4-inch diameter casing to 400 feet bgs (Table 1). The sonic well borehole was drilled using a Terrasonic 600 drill rig.



Terrasonic 600 drill rig

The ORMWP borehole was advanced to a total depth of 400 feet bgs. From the recovered core, which could be as large as seven inches in diameter in the uppermost interval, a narrower core was subsampled and saved to standard core boxes for lithologic description and archiving. Lithologic logging and soil sampling were conducted during borehole drilling as described in Section 2.2.3.

# 2.2.2 Drilling of ORMW1

The borehole for ORMW1 was advanced using the air rotary casing hammer (ARCH) drilling method. Temporary steel casing is driven into the formation using a hydraulic hammer, with a standard tricone bit of similar diameter drilling just ahead of the casing. Compressed air is used as the circulating fluid, thus no water is added during the drilling process. The temporary casing was advanced using a telescoping approach, with 11¾-inch diameter casing to 240 feet bgs and 10-inch diameter casing to the total depth of 660 feet bgs (Table 1). The ORMW1 borehole was drilled using a Speedstar 50K rotary drill rig configured for ARCH.



Speedstar 50K rotary drill rig configured for ARCH

The well borehole was advanced to the total depth of 660 feet bgs. Drill cutting samples were collected for lithologic description at 5-foot intervals using a sieve-type catcher placed below the cyclone where the air stream with drill cuttings discharges into a hopper. Undisturbed soil core samples were collected from predetermined intervals using a modified California split-spoon sampler driven by a standard 140-pound hammer. Lithologic logging and soil sampling were conducted during borehole drilling as described in Section 2.2.3.

# 2.2.3 Lithologic Logging and Soil Sampling

Lithologic logging was performed to define the lithology of geologic materials and to characterize subsurface geologic and hydrogeologic conditions. Lithologic logs were compiled based on the description of continuous core samples obtained during sonic drilling of monitoring well ORMWP and on description of drill cutting samples recovered at land surface during ARCH drilling of monitoring well ORMW1.

Soil type was characterized using the Unified Soil Classification System (American Society for Testing and Materials [ASTM], 2009). Soil color was described using Munsell Soil Color Charts (Munsell Soil Color Charts, 1992). Grain size was estimated using ASTM standards (ASTM, 2009). Lithologic logs are included in Appendix B.



Subsamples of continuous core obtained during drilling of ORMWP were submitted to an environmental laboratory for a laboratory leaching test using Synthetic Precipitation Leaching Procedure (SPLP). Sample intervals were selected to target fine grained zones with the potential for mineralogy that may result in leaching of constituents that may negatively affect groundwater quality. The test used synthetic water with chemical and physical properties similar to the State Project water that will be used for future recharge. Results of leachate sampling have been summarized (Tables 2 and 3) and laboratory reports are included in Appendix C. A data verification was conducted and all reported data is valid.

Undisturbed soil samples obtained during drilling of ORMW1 were submitted to a geotechnical laboratory for analysis of grain size distribution, effective porosity, dry bulk density, vertical hydraulic conductivity, and unsaturated zone soil retention curves. Sample intervals were selected to represent a range of observed lithology. Soil physical properties are summarized in Table 4. Geotechnical laboratory reports are provided in Appendix D.

# 2.3 WELL CONSTRUCTION

Following drilling of each borehole, H+A and MWA determined the final well design for ORMWP and ORMW1 based on lithology and apparent depth to water encountered during drilling. Final as-built monitoring well construction details are provided in Table 1 and Figures 3 and 4.

## 2.3.1 Monitoring Well ORMWP

Construction of well ORMWP was completed on January 5, 2022. ORMWP was installed in a dry borehole, and is intended to act as a monitoring well screened in soil that may become saturated above a potential perching layer during future recharge events. Well construction details for ORMWP are summarized in Table 1 and Figure 3.

The bottom seal (portion of the borehole below the target depth for well construction) was backfilled with 50 percent No. 8 granular bentonite / 50 percent Monterey No. 3 sand by weight. The bentonite/sand seal was emplaced by pouring materials into the dry borehole from the surface, utilizing the temporary casing as a tremie pipe. The bentonite/sand seal was emplaced into the borehole from the bottom up, withdrawing the temporary casing as the borehole was backfilled.



Nominal 2-inch diameter Schedule 80 polyvinyl chloride (PVC) well screen (0.020-inch factory slotted) and nominal 2-inch diameter Schedule 80 PVC blank well casing was used to construct the monitoring well. Centralizers were installed at the top and bottom of the screen interval and at approximate 40-foot intervals along the blank well casing.

A filter pack consisting of Monterey No. 3 sand was emplaced dry in the annulus between the well screen and the borehole wall. A filter pack transition seal (intermediate seal) consisting of 50 percent No. 8 granular bentonite / 50 percent Monterey No. 3 sand by weight was emplaced into the annulus above the filter pack using the temporary casing as a tremie pipe, as described above. The temporary casing was gradually withdrawn as the bentonite/sand level rose during emplacement. The sanitary seal consists of neat cement grout containing 5 percent bentonite emplaced from the top of the intermediate seal to 2 feet bgs. From approximately 2 feet bgs to land surface, the annulus was filled with concrete in order to set the above-ground monument vault (see Section 2.3.3).

# 2.3.2 Monitoring Well ORMW1

Construction of monitoring well ORMW1 was completed on February 14, 2022. Well construction details for ORMW1 are summarized in Table 1 and Figure 4. Prior to beginning well construction activities, the bottom of the borehole was tagged at 552 feet bgs, indicating slough filled the bottom 8 feet of the borehole.

Nominal 4-inch diameter Schedule 80 PVC well screen (0.020-inch factory slotted) and nominal 4-inch diameter Schedule 80 PVC blank well casing was used to construct the well. Centralizers were installed at the top, center and bottom of the screen interval and at approximate 40-foot intervals along the blank well casing.

A filter pack consisting of Monterey No. 3 sand was emplaced in the annulus between the well screen and the borehole wall, using the temporary casing as a tremie pipe. A filter pack transition seal (intermediate seal) consisting of 50 percent medium bentonite chips / 50 percent 8 x 16 No. 12 mesh sand by volume was emplaced into the annulus above the filter pack using the temporary casing as a tremie pipe, as described above. The temporary casing was gradually withdrawn as the bentonite/sand level rose during emplacement. The sanitary seal consists of neat cement grout containing 5 percent bentonite was emplaced from the top of the intermediate

HARGIS+ASSOCIATES, INC.

seal to 3 feet bgs. From approximately 3 feet bgs to land surface, the annulus was filled with concrete in order to set the above-ground monument vault (Section 2.3.3).

2.3.3 Surface Completion

Monitoring wells were completed with above-ground monument-type well vaults. Well vaults are constructed of steel tubing set in concrete slightly above the surrounding land surface (Figures 3 and 4). Well vaults are surrounded by steel bollards set in concrete. The monument vault and bollards are painted bright yellow for visibility.

2.4 GEOPHYSICAL LOGGING

Following construction of ORMW1, geophysical logging was conducted using downhole wireline logging tools within the PVC well casing and screen. Geophysical logging was performed on February 15, 2022, by Pacific Surveys, Claremont, California. Geophysical logs are provided in Appendix E.

The following logs were run in the borehole:

Gamma Ray; and

Electromagnetic Induction (Dual Induction)

Geophysical logs were used to generally confirm subsurface geology based on samples collected during ARCH drilling operations. The dual induction log was also collected to assess the moisture condition of the formation surrounding the borehole, to allow comparison of its present condition with changes in soil moisture following initiation of future recharge events.

# 2.5 WELL DEVELOPMENT AND GROUNDWATER SAMPLING

Well development was not conducted at ORMWP because the well was dry at the time of installation.

Initial development of ORMW1 was performed immediately following placement of the filter pack and consisted of gentle swabbing to settle the filter pack. No settling occurred; thus no additional filter pack sand was added.

Final development of monitoring well ORMW1 was performed during the period March 1 through March 16, 2022. Monitoring well development details have been provided (Table 5; Appendix F). Development methods for monitoring well ORMW1 incorporated swabbing, bailing, pumping and dual-tube airlifting. Water generated during well development was discharged to the land surface on-property.

Bailing of monitoring well ORMW1 was conducted to remove approximately 10 feet of sediment from the bottom of the screen interval. Bailing proved to be minimally effective despite attempts using several bailer designs. While approximately 2.9 feet of sediment and 38 gallons of water was bailed from the bottom of the well, additional sediment entered the well during the process, resulting in approximately 20 feet of sediment at the bottom of the well. After consultation with ABC and MWA, it was decided to discontinue bailing and attempt to remove the remaining sediment using dual-tube air lifting. Due to airline submergence limitations, it was not anticipated that effective development via dual-tube airlifting would be possible without increasing the level of submergence in the well by adding municipal potable water from the adjacent hydrant. Therefore, pumping development and subsequent collection of the initial groundwater sample was conducted prior to resuming removal of the sediment via air lifting/addition of hydrant water to ensure the sample is representative of groundwater conditions and not impacted by the addition of hydrant water to the well.

During pumping development, the well was pumped at a rate of approximately two gallons per minute, and approximately 364 gallons of water was removed by pumping. Turbidity decreased throughout pumping development, with a final turbidity of 3.7 nephelometric turbidity units indicating that the well was sufficiently developed (Appendix F). At the end of pumping development on March 2, 2022, the initial groundwater sample was collected from ORMW1 by

# HARGIS+ASSOCIATES, INC.

MWA personnel. Approximately 6.7 casing volumes of water was removed from the well by bailing and pumping prior to collecting the initial groundwater sample. Chain-of-custody documentation was enclosed with the sample shipment and groundwater samples were analyzed by the MWA laboratory. Results of groundwater sample analysis have been summarized in Table 5 and the laboratory report is included in Appendix G. A data verification was conducted and all reported data is valid.

Dual tube airlifting to attempt removal of the sediment remaining in the bottom of the well was conducted on March 14 to 16, 2022. To maintain adequate submergence, municipal potable water was added from the adjacent hydrant as needed. It was necessary to add a total of approximately 136,150 gallons of municipal water to maintain circulation. After approximately 9½ hours of airlifting and removal of 1,725 gallons of water, approximately 7 feet of sediment remained at the bottom of the well.

# 2.6 SITE CLEANUP, WELL SURVEY, AND WELL COMPLETION REPORT

After well installation and development the Site was cleaned up and left in restored condition. Drill cuttings were spread out over land surface, without disturbing Joshua trees that occur on the property. Litter and other waste were removed from the drill site. MWA conducted a site walk with H+A and ABC staff and approved the restored site conditions.

Following well installation and surface completion, a survey of well locations and elevations was conducted by MWA. The survey was conducted on March 23, 2022. The MWA Well Canvassing Sheet for ORMW1 is provided in Appendix H.

A Well Completion Report for each well was submitted to the California Department of Water Resources on April 4, 2022 (Appendix I).

# 3.0 REFERENCES

- American Society for Testing and Materials (ASTM), 2009. <u>Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).</u> Designation D2488. Annual Book of ASTM Standards; Volume 04.08, Soil and Rock Building Stones. Philadelphia, Pennsylvania: ASTM.
- Hargis + Associates, Inc. (H+A), 2021. Letter from S. Prazen to R. Hampson, Mojave Water Agency (MWA), re: Scope of Work and Cost Estimate for Monitor Well Construction Management and Hydrogeology Support for Infiltration Testing, Oeste Demonstration Recharge Project. September 7, 2021.
- Mojave Water Agency (MWA), 2021. Oeste Recharge Well (Project No. 449) Contract Documents.
- Munsell Soil Color Charts, 1992 edition. Newburgh, New York: Kollmorgen Instruments Corporation.

**TABLES** 

TABLE 1

# MONITORING WELL CONSTRUCTION SUMMARY

| WELL<br>IDENTIFIER | DATES DRILLED<br>AND INSTALLED | DRILLING<br>METHOD | LAND<br>SURFACE<br>ELEVATION | TOTAL<br>DEPTH OF<br>BOREHOLE | BOREHOLE<br>DIAMETER                              | SCREEN AND<br>CASING<br>DIAMETER <sup>(a)</sup> | BLANI<br>CASING I<br>(feet |        | SCREEN (feet |        | INVE | M SEAL<br>RVAL<br>bgs) | BOTTOM<br>SEAL<br>MATERIAL        | INV | ER PACK<br>ERVAL<br>et bgs) | FILTER<br>PACK<br>SAND | ANNUL<br>INVE | MEDIATE<br>AR SEAL<br>ERVAL<br>t bgs) | INTERMEDIATE<br>ANNULAR SEAL<br>MATERIAL |     | RY SEAL <sup>(b)</sup><br>ot bgs) |
|--------------------|--------------------------------|--------------------|------------------------------|-------------------------------|---------------------------------------------------|-------------------------------------------------|----------------------------|--------|--------------|--------|------|------------------------|-----------------------------------|-----|-----------------------------|------------------------|---------------|---------------------------------------|------------------------------------------|-----|-----------------------------------|
|                    |                                |                    | (feet msl)                   | (feet)                        | (inches)                                          | (inches)                                        | ТОР                        | воттом | ТОР          | воттом | ТОР  | воттом                 | MATERIAL                          | ТОР | воттом                      | SIZE                   | ТОР           | воттом                                | WATERIAL                                 | ТОР | воттом                            |
| ORMWP              | 12/20/21 - 1/5/22              | SONIC              | 3466.5                       | 400                           | 10 to 100'<br>8 to 320'<br>6 to 375'<br>4 to 400' | 2                                               | 0                          | 271    | 271          | 291    | 291  | 400                    | Bentonite/<br>Sand <sup>(d)</sup> | 269 | 291                         | #3                     | 21            | 269                                   | Bentonite/<br>Sand <sup>(d)</sup>        | 0   | 21                                |
| ORMW1              | 1/31/22 - 2/14/22              | ARCH               | 3466.2                       | 660                           | 11 <sup>3/4</sup> to 240'<br>10 to 660'           | 4                                               | 0                          | 560    | 560          | 640    | NA   | NA                     |                                   | 549 | 652 <sup>(e)</sup>          | #3                     | 22            | 549                                   | Bentonite/ Sand <sup>(c)</sup>           | 0   | 22                                |

# Notes:

 $^{(a)}$  = Well screens and well casing are schedule 80 polyvinyl chloride. All well screens are 0.020-inch slot.

(b) = Sanitary seal consists of Type I/II neat Portland cement with approximately 5% bentonite, uppermost 2-3 feet of borehole backfilled with concrete.

(c) = Medium bentonite chips and 8x16 No. 12 mesh sand, 1:1 ratio by volume.

 $^{(d)}$  = No. 8 granular bentonite and #3 filter pack sand, 1:1 ratio by weight.

 $^{(e)}$  = In ORMW1, slough fills the bottom of the borehole from 652 feet to 660 feet bls

ARCH = air rotary casing hammer

bgs = below ground surface

msl = mean sea level

NA = Not applicable

?

1311\_2022\_H01\_01\_Tbl1\_WellConstDates&Details



TABLE 2

METALS IN SOIL LEACHATE SAMPLES

# METAL CONCENTRATIONS IN LEACHATE, MICROGRAMS PER LITER

| Well<br>Identifier | Sample<br>Identifier | Depth,<br>feet bgs | Aluminum | Arsenic | Barium | Chromium,<br>total | Chromium,<br>hexavalent | Copper | Iron   | Lead | Magnesium | Manganese | Nickel | Vanadium | Zinc |
|--------------------|----------------------|--------------------|----------|---------|--------|--------------------|-------------------------|--------|--------|------|-----------|-----------|--------|----------|------|
| ORMWP              | MW-1-120             | 120                | 9,250    | 3.81    | 78.2   | 13.1 E             | < 10 E                  | 16.1   | 11,900 | 5.62 | 3,980     | 210       | 6.98   | 43.7 E   | < 25 |
| ORMWP              | MW-1-291             | 291                | 7,850    | 2.66    | 73.1   | 18.5 E             | < 10 E                  | 23.2   | 12,100 | 5.67 | 5,030     | 193       | 17.9   | 33.8 E   | 45.8 |
| ORMWP              | MW-1-340             | 340                | 3,590    | 2.03    | 39.9   | < 10.0 E           | < 10 E                  | 6.33   | 3,990  | 2.23 | 2,790     | 82.2      | 2.33   | 42.2 E   | < 25 |

# Notes:

bgs = below ground surface

< = less than; value is limit of detection

E = estimated

No other metals were detected in leachate samples



TABLE 3

GENERAL MINERALS AND COMMON IONS IN SOIL LEACHATE SAMPLES

# CONCENTRATIONS IN LEACHATE, MICROGRAMS PER LITER

| Well<br>Identifier | Sample<br>Identifier | Depth,<br>feet bgs | Cyanide | Orthophosphate | Bromide   | Calcium | Chloride  | Fluoride | Nitrate    | Sulfate   | Sodium |
|--------------------|----------------------|--------------------|---------|----------------|-----------|---------|-----------|----------|------------|-----------|--------|
| ORMWP              | MW-1-120             | 120                | < 5 E   | < 30 E         | < 10,000  | 5,790   | < 10,000  | < 1,500  | < 1,000 E  | < 50,000  | 20,100 |
| ORMWP              | MW-1-291             | 291                | < 5 E   | < 30 E         | < 10,000  | 7,500   | < 10,000  | < 1,500  | < 1,000 E  | < 50,000  | 24,100 |
| ORMWP              | MW-1-340             | 340                | < 5 E   | < 30 E         | < 100,000 | 10,700  | < 100,000 | < 15,000 | < 10,000 E | < 500,000 | 58,200 |

## Notes:

bgs = below ground surface

< = less than; value is limit of detection

E = estimated

**TABLE 4** 

# **SOIL PHYSICAL PROPERTIES**

| WELL<br>IDENTIFIER | SAMPLE ID          | SAMPLE DEPTH | DRY BULK<br>DENSITY | TOTAL<br>POROSITY | EFFECTIVE<br>POROSITY | HYDRAULIC<br>CONDUCTIVITY |  |
|--------------------|--------------------|--------------|---------------------|-------------------|-----------------------|---------------------------|--|
|                    |                    | feet bgs     | g/cc                | %Vb               | %Vb                   | ft/d                      |  |
| ORMW1              | Oeste-Recharge-224 | 224-224.5    | 1.65                | 40.6              | 29.8                  | 0.058                     |  |
| ORMW1              | Oeste-Recharge-260 | 260-260.5    | 1.84                | 32.6              | 24.1                  | 0.044                     |  |
| ORMW1              | Oeste-Recharge-501 | 501-501.5    | 1.59                | 45.1              | 27.8                  | 0.011                     |  |
| ORMW1              | Oeste-Recharge-660 | 660-660.5    | 1.69                | 38.9              | 31.5                  | 0.530                     |  |

# Notes:

bgs = below ground surface g/cc = gram per cubic centimeter %Vb = percent of bulk volume ft/d - feet per day

TABLE 5
MONITORING WELL DEVELOPMENT SUMMARY

| WELL<br>IDENTIFIER | DATES DEVELOPED                      | DEVELOPMENT<br>METHOD | DURATION<br>(minutes) | VOLUME<br>(gallons) | TOTAL<br>VOLUME<br>(gallons) |
|--------------------|--------------------------------------|-----------------------|-----------------------|---------------------|------------------------------|
|                    |                                      |                       |                       |                     |                              |
|                    | 3/1/22-3/2/22 and                    | Bail                  | 600                   | 38                  |                              |
| ORMW1              | 3/1/22-3/2/22 and<br>3/14/22-3/16/22 | Pump                  | 203                   | 364                 | 2,127                        |
|                    | J/ 1 <del>4</del> /22=3/ 10/22       | Airlift               | 575                   | 1,725               |                              |

TABLE 6
ORMW1 GROUNDWATER QUALITY SUMMARY

| ANALYTE                         | RESULT | UNITS    | REPORTING<br>LIMIT | METHOD    |
|---------------------------------|--------|----------|--------------------|-----------|
| Alkalinity in CaCO3 units       | 170    | mg/L     | 2                  | SM 2320B  |
| Aluminum dissolved ICAP/MS      | ND     | ug/L     | 20                 | EPA 200.8 |
| Anion Sum - Calculated          | 6.1    | meq/L    | 0.001              | SM 1030E  |
| Antimony dissolved ICAP/MS      | ND     | ug/L     | 1                  | EPA 200.8 |
| Apparent Color                  | ND     | AČU      | 3                  | SM 2120B  |
| Arsenic dissolved ICAP/MS       | ND     | ug/L     | 1                  | EPA 200.8 |
| Barium dissolved ICAP/MS        | 32     | ug/L     | 2                  | EPA 200.8 |
| Beryllium dissolved ICAP/MS     | ND     | ug/L     | 1                  | EPA200.8  |
| Bicarb.Alkalinity as HCO3calc   | 200    | mg/L     | 2                  | SM2330B   |
| Bicarbonate as CaCO3            | 170    | mg/L     | -                  | SM2320B   |
| Boron Dissolved ICAP            | ND     | mg/L     | 0.05               | EPA200.7  |
| Cadmium dissolved ICAP/MS       | ND     | ug/L     | 0.5                | EPA200.8  |
| Calcium Dissolved ICAP          | 61     | mg/L     | 1                  | EPA200.7  |
| Calcium Total ICAP              | 62     | mg/L     | 1                  | EPA200.7  |
| Carbonate (as CaCO3)            | ND     | mg/L     | 2                  | SM2330B   |
| Carbonate as CO3, Calculated    | ND     | mg/L     | 2                  | SM2330B   |
| Cation Sum - Calculated         | 6.2    | meq/L    | 0.001              | SM1030E   |
| Cation/Anion Difference         | 1.3    | %        | -                  | SM1030E   |
| Chloride                        | 2.3    | mg/L     | 0.5                | EPA300.0  |
| Chromium dissolved ICAP/MS      | 22     | ug/L     | 1                  | EPA200.8  |
| Copper dissolved ICAP/MS        | 3.1    | ug/L     | 2                  | EPA200.8  |
| Dissolved Silica                | 21     | mg/L     | 0.5                | EPA200.7  |
| Field pH                        | 6.79   | pH Units | -                  | EPA150.1  |
| Fluoride                        | 0.18   | mg/L     | 0.05               | SM4500F-C |
| Hexavalent Chromium by 218.6    | 21     | ug/L     | 0.02               | EPA218.6  |
| Hydroxide (as CaCO3)            | 0.0031 | mg/L     | -                  | SM2320B   |
| Iron Dissolved ICAP             | ND     | mg/L     | 0.01               | EPA200.7  |
| Iron Total ICAP                 | ND     | mg/L     | 0.01               | EPA200.7  |
| Iron_Ferric                     | ND E   | mg/L     | 0.5                | SM3500    |
| Iron_Ferrous                    | ND     | mg/L     | 0.1                | SM3500FeB |
| Langelier Index - 25 degree     | -0.55  | None     | -14                | SM2330B   |
| Langelier Index at 60 degrees C | NA     | None     | -14                | SM2330B   |
| Lead dissolved ICAP/MS          | ND     | ug/L     | 0.5                | EPA200.8  |
| Magnesium Dissolved ICAP        | 24     | mg/L     | 0.1                | EPA200.7  |
| Magnesium Total ICAP            | 24     | mg/L     | 0.1                | EPA200.7  |
| Manganese dissolved ICAP/MS     | 5.5    | ug/L     | 2                  | EPA200.8  |
| Mercury dissolved ICAP/MS       | ND     | ug/L     | 0.2                | EPA200.8  |
| Nickel dissolved ICAP/MS        | ND     | ug/L     | 5                  | EPA200.8  |
| Nitrate as Nitrogen by IC       | 0.3    | mg/L     | 0.05               | EPA300.0  |
| Nitrate as NO3 (calc)           | 1.3    | mg/L     | 0.22               | EPA300.0  |
| Nitrite as NO2 (calc)           | ND     | mg/L     | 0.16               | Default   |
| Nitrite Nitrogen by IC          | ND     | mg/L     | 0.05               | EPA300.0  |
| Orthophosphate as P             | 0.033  | mg/L     | 0.01               | SM4500P-E |

TABLE 6
ORMW1 GROUNDWATER QUALITY SUMMARY

| ANALYTE                               | RESULT | UNITS     | REPORTING<br>LIMIT | METHOD             |
|---------------------------------------|--------|-----------|--------------------|--------------------|
| Orthophosphate as PO4                 | 0.1    | mg/L      | 0.031              | SM4500P-E          |
| Oxidation Reduction Potential         | 397 E  | mV        | -                  | ASTMD1498          |
| PH (H3=past HT not compliant)         | 8.1    | pH Units  | 0.1                | SM4500-HB          |
| Potassium Dissolved ICAP              | 6.3    | mg/L      | 1                  | EPA200.7           |
| Potassium Total ICAP                  | 6.1    | mg/L      | 1                  | EPA200.7           |
| Selenium dissolved ICAP/MS            | ND     | ug/L      | 5                  | EPA200.8           |
| Sodium Dissolved ICAP                 | 24     | mg/L      | 1                  | EPA200.7           |
| Sodium Total ICAP                     | 24     | mg/L      | 1                  | EPA200.7           |
| Source Temperature Degrees C          | 25.7   | Degrees C | -                  | FIELD/SM2550B      |
| Specific Conductance, 25 C            | 570    | umho/cm   | 10                 | SM2510B            |
| Sulfate                               | 130    | mg/L      | 0.5                | EPA300.0           |
| Thallium dissolved ICAP/MS            | ND     | ug/L      | 1                  | EPA200.8           |
| Total Dissolved Solids (TDS)          | 360    | mg/L      | 10                 | E160.1/SM2540C     |
| Total Hardness as CaCO3 by ICP (calc) | 250    | mg/L      | 3                  | SM2340B            |
| Total Nitrate, Nitrite-N, CALC        | 0.3    | mg/L      | 0.05               | EPA300.0           |
| Total phosphorus as P                 | 0.035  | mg/L      | 0.02               | SM4500-PE/EPA365.1 |
| Total phosphorus as PO4- Calc.        | 0.11   | mg/L      | 0.0305             | SM4500-PE/EPA365.1 |
| Turbidity                             | 1.9    | NTU       | 0.1                | EPA180.1           |
| Uranium Diss by ICPMS as pCi/L        | 2.1    | pCi/L     |                    | EPA200.8           |
| Uranium dissolved ICAP/MS             | 3.1    | ug/L      | 1                  | EPA200.8           |
| Vanadium Dissolved ICAP/MS            | 5.5    | ug/L      | 3                  | EPA200.8           |
| Zinc dissolved ICAP/MS                | 820    | ug/L      | 20                 | EPA200.8           |

<sup>\*</sup> Sample collected March 2, 2022

# Notes:

C = degrees celcius

E = Estimated

mg/l = milligrams per liter

NTU = nephelometric turbidity unit

pCI/L = picocurries per liter

umho/cm = micromhos per centimeter

ug/l = micrograms per liter

# **FIGURES**

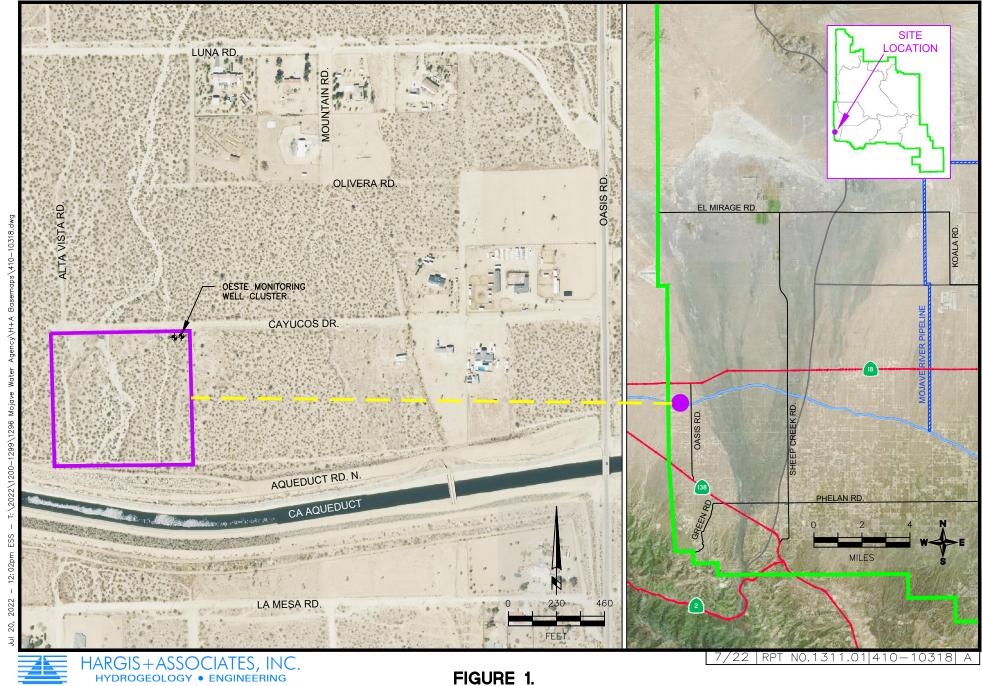



FIGURE 1.
WELL SITE LOCATION MAP



FIGURE 2.
MONITORING WELL LOCATION DETAIL



HARGIS+ASSOCIATES, INC. HYDROGEOLOGY • ENGINEERING

FIGURE 3.



HARGIS+ASSOCIATES, INC. HYDROGEOLOGY • ENGINEERING

7/22 | RPT NO.1311.01 | 710-0962

# APPENDIX A WELL CONSTRUCTION PERMITS



385 N Arrowhead Ave, 2nd floor, San Bernardino, CA 92415 | Phone: 800.442.2283 • Fax: 909.387.4323 Email: <u>EHS.CustomerService@dph.sbcounty.gov</u>

www.SBCounty.gov www.sbcounty.gov/dph/dehs Phone: (800) 442-2283



# **APPLICATION FOR WELL PERMIT**

MW-1

|                                  | THIS SECTION T                                                                           | O BE C   | COMPLETED BY       | APPL                    | LICANT • HEALTH PERMITS A          | RE NOT TRAN              | SFERABLE              |                              |  |
|----------------------------------|------------------------------------------------------------------------------------------|----------|--------------------|-------------------------|------------------------------------|--------------------------|-----------------------|------------------------------|--|
| Property Owner                   | Main 10/14                                                                               | ^        | 1-P                | ROPE                    | ERTY INFORMATION                   |                          | Phone Numb            | er                           |  |
|                                  | Mojave Wate                                                                              |          | ency               |                         | City                               | State -                  |                       | <sup>er</sup> (760) 946-7061 |  |
| 100                              | 35 Cayucos R                                                                             |          |                    |                         | City Pinon Hills                   | State CA                 | <sup>Zip</sup> 9237   | <u>'1</u>                    |  |
| Assessor's Parce                 | 1 Number 30990                                                                           | 810      | 1                  |                         | Email                              |                          |                       |                              |  |
| Township                         | N/S Tier 5N                                                                              |          |                    |                         | E/W Range 7W                       | Section 30               |                       |                              |  |
| Well Head                        | Latitude (decimal) 34                                                                    |          |                    |                         | Longitude (decimal) -117.6500      | 81                       |                       |                              |  |
| Property Owner's                 | Mailing Address 1384                                                                     | 6 Con    | ference Cente      | r Dr.                   | <sup>City</sup> Apple Valley       | State CA                 | <sup>Zip</sup> 9230   | 7                            |  |
|                                  |                                                                                          | 12.12    | 2 - CO             | NSU                     | TANT INFORMATION                   |                          |                       |                              |  |
| Name of Consulta                 | <sup>ant</sup> Hargis and                                                                | Ass      | ociates, Inc       | <b>)</b> .              | Email SPRAZEN@HAF                  | RGIS.COM                 |                       | <sup>er</sup> 858-410-7404   |  |
| Address 9171                     | I Towne Cen                                                                              | tre D    | rive, Suite 3      | 375                     | <sup>City</sup> San Diego          | State CA                 | <sup>Zip</sup> 9212   | 2                            |  |
|                                  |                                                                                          |          | 3 - REGISTER       | ELL DRILLER INFORMATION |                                    | Dhara Namb               |                       |                              |  |
| Name of Driller                  | ABC Liovin D                                                                             | rilling  | g, Inc.            |                         |                                    |                          | Phone Numb            | <sup>er</sup> 562-981-8575   |  |
| Email                            |                                                                                          |          |                    |                         | jack@abcdrilling.com               | C-57 License Num         | <sup>hber</sup> 42290 | )4                           |  |
| Return well pe                   | ermit to <a> <a> <a> <a> <a> <a> <a> <a> <a> <a></a></a></a></a></a></a></a></a></a></a> | Driller  | ☐ Consulta         |                         | ☐ Property Owner                   | Return by                | ☐ Mail                | ■ Email                      |  |
|                                  |                                                                                          |          |                    |                         | YPE OF WORK                        |                          |                       | Alta so positi               |  |
| ■ New                            |                                                                                          |          | Recor              |                         |                                    | ☐ Destruc                |                       |                              |  |
| Date of Work                     | 12/13/2021                                                                               |          | Start Date 12/13   |                         |                                    | Estimated groundw        | aler depth 55         | 0-600 ft                     |  |
| ☐ Agriculture                    |                                                                                          |          | ☐ Geother          |                         | WELL TYPE                          | Industrial               |                       |                              |  |
| ☐ Cathodic                       |                                                                                          |          | ☐ Horizont         |                         |                                    | Monitoring/Obs           | ervation              |                              |  |
| ☐ Community.                     | /PWS/City – <b>Specify (</b>                                                             | Jse Bel  | i tooldoii         |                         | annot be used as a                 | ] Test                   |                       |                              |  |
| Use:                             |                                                                                          |          | commur             |                         | " NNULAR SEAL                      | Other                    |                       |                              |  |
| Seal Depth (ft                   | )21                                                                                      | -2       |                    | U - A                   | MNOLAR SEAL                        |                          |                       |                              |  |
| , ,                              | nductor Diameter (in                                                                     | n.)      |                    |                         | ■ Wall (gauge) (in.) SCH {         | R∩ <b>■ D</b> rilling me | ethod Son             | ic                           |  |
|                                  | aterial Cement                                                                           | •        | onite Grou         | ıt                      | ■ Thickness (in.) 2                | 50 E 21111119            | 00.00 0011            |                              |  |
| _                                |                                                                                          |          |                    |                         |                                    |                          |                       |                              |  |
| Sealing materia                  | I shall be placed in on                                                                  | e contin | uous pour. Annular | seal t                  | hickness must be at least 2 inches | for public water su      | upply wells.          |                              |  |
|                                  |                                                                                          | UGH 1    | 0 TO BE ESTIMA     | ATED                    | FOR NEW WELLS, EXACT FO            | OR ALL OTHER             | WELLS                 | Mark Control                 |  |
| Proposed Depth o                 | of Well (ft.) 400                                                                        |          | Existing Dep       | th of W                 | 'ell (ft.)                         | Diameter of Bo           | re (in.) 8            | III-JUNEY SAME OF            |  |
|                                  |                                                                                          | 8-40-30  | 8 -                | - CAS                   | SING INSTALLED                     |                          |                       |                              |  |
| Casing Ma                        | terial                                                                                   | TSM/AV   | VWA/APPI           |                         |                                    |                          |                       |                              |  |
| Fro                              | om (ft.)                                                                                 |          | To (ft.)           |                         | Diameter (in.)                     |                          | Wall (Ga              | uge)                         |  |
| (                                | 300                                                                                      |          | 0                  |                         | 2                                  |                          | SCH                   | 80                           |  |
|                                  |                                                                                          |          |                    |                         |                                    |                          |                       |                              |  |
| Gravel Pack                      | Yes                                                                                      |          | □ No               |                         | From (ft.) 325                     | To (ft.)                 | 295                   |                              |  |
| Specify Other<br>Backfill Materi | <sub>al</sub> Bentonite                                                                  | Sea      | al                 |                         | From (ft.) 295                     | To (ft.)                 | 21                    |                              |  |

| BEHENHINGER                          | HERITIGESES TAX                                                     |                                                | - PERFORATION               | NS (list all if a                                                     | pplicable)                                               |                          |                                                                 |
|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------|-----------------------------------------------------------------|
| From (ft.)32                         | 20                                                                  |                                                | ,,,,,,                      | Well Screen S                                                         |                                                          | Pumping Rate             | (gpm) unknown                                                   |
|                                      |                                                                     | V 2 9 5 5 6 1                                  | 0 - SEALED ZON              | • • • • • • • • • • • • • • • • • • • •                               | pplicable)                                               |                          |                                                                 |
| From (ft.)29                         | )5                                                                  |                                                |                             | To (ft.) ()                                                           | -                                                        | 400-325                  |                                                                 |
| (inc                                 |                                                                     | vells), sewage o                               | and label the follo         |                                                                       |                                                          |                          | erty lines, other wells<br>its, cesspools), lakes               |
| b) Indica<br>sca                     | ate the distance, in                                                | n feet, of any o                               | f the above which           |                                                                       |                                                          |                          | needs to be drawn to to the well site within                    |
| c) 🔳                                 | None of the above                                                   | is within 500 fe                               | et.                         |                                                                       |                                                          |                          |                                                                 |
| d) Soli                              | d or Liquid Dispos                                                  | al Site within Tv                              | vo Miles                    | ☐ Yes                                                                 | ☑ No                                                     | Location                 |                                                                 |
|                                      |                                                                     |                                                | THOD OF CONST               |                                                                       |                                                          |                          |                                                                 |
| accordance v<br>standards sh         | with the standards<br>all also be followed<br>water well drillers r | recommended of the for public water to Environ | n the California De         | epartment of W<br>vices within 30                                     | ater Resources B                                         | sulletin No. 74-81       | ne method shall be in<br>and 74-90. Title 22<br>ruct or destroy |
| Monitoring wells wentonite plug will | vill be constructed with 2<br>be placed and hydrated                | 2″ or 4″ flush thread<br>d with clean water. T | PVC, filter pack will be cl | lean washed sand a<br>will consist of neat<br>ill finish the installa | and placed with tremie<br>cement with 5% bento<br>ation. | to at least 2' above the | slotted well screen, a 2-5' upward motion with tremi            |
| I have read the                      | nis application and                                                 | agree to comp                                  | y with all laws regu        |                                                                       |                                                          | rformed                  |                                                                 |
| Property Owner's                     |                                                                     | 11                                             | ,                           |                                                                       | D                                                        | ate                      |                                                                 |
| Signature<br>Print Property Ov       | woods Name                                                          | Baupsen                                        |                             |                                                                       | · //                                                     | 1/29/2021                |                                                                 |
|                                      | ROD                                                                 | ert Hamp                                       | son                         |                                                                       |                                                          |                          |                                                                 |
| C-57 Contractor's<br>Signature       | s X                                                                 |                                                | h                           |                                                                       | D                                                        | <sup>vate</sup> 12/13/2  | 021                                                             |
| Print Contractor's                   | s Name Ivan 1                                                       | Liovin                                         | <i></i>                     |                                                                       |                                                          |                          |                                                                 |
|                                      | For Office Use                                                      | Only DISPOS                                    | SITION OF PERMI             | T For Office                                                          | Use Only DISP                                            | OSITION OF PEF           | TIME                                                            |
| X Sent to Wa                         |                                                                     | , only 6101 0                                  | ornorror renam              | , 10,01100                                                            | Permit Number:                                           | 000440004                |                                                                 |
| ☐ Water Age                          | ncy conditions or rec                                               | commendations at                               | tached                      |                                                                       | Expiration Date:                                         | 6-13-2022                |                                                                 |
| ☐ Denied                             |                                                                     |                                                |                             |                                                                       | WP Number:                                               | WP003756                 | 4                                                               |
| Approved s                           | subject to the following                                            | ng:                                            |                             |                                                                       |                                                          | '                        |                                                                 |
| А. 🗆                                 |                                                                     | erations: (Inspect                             | ions are conducted M        |                                                                       |                                                          |                          | to make an inspection o cancel or reschedule                    |
|                                      | ☐ Prior to sealing                                                  | g of the annular sp                            | pace or filling of the c    | onductor casing.                                                      |                                                          |                          |                                                                 |
|                                      | ☐ After installation                                                | on of the surface p                            | rotective slab and pu       | ımping equipme                                                        | nt.                                                      |                          |                                                                 |
|                                      | ☐ After installation                                                | on of the surface f                            | eatures.                    |                                                                       |                                                          |                          |                                                                 |
|                                      | ☐ During destruction                                                | tion of wells, prior                           | to pouring the sealir       | ng material.                                                          |                                                          |                          |                                                                 |
| В. 💢                                 | Submit to the Divis                                                 | sion, within thirty (                          | 30) days after comple       | etion of work, a d                                                    | copy of:                                                 |                          |                                                                 |
|                                      | ★ Water Well Dri                                                    | ller's Report                                  | ☐ Bacterial Analy           | _                                                                     | rganic Chemical An                                       |                          | eneral Physical                                                 |
| 0                                    | Radiological A                                                      | nalysis                                        | ☐ Nitrate as Nitro          | ogen 🗌 Org                                                            | ganic Chemical Ana                                       | lysis 🗌 Ge               | eneral Mineral                                                  |
| Comments                             |                                                                     |                                                |                             |                                                                       |                                                          |                          |                                                                 |
|                                      |                                                                     |                                                |                             |                                                                       |                                                          |                          |                                                                 |
|                                      |                                                                     |                                                |                             |                                                                       | 1100-1-1                                                 |                          |                                                                 |
| 15                                   | F 05 U 6                                                            | E - 0" -                                       | les 0-1 - F 6/5             |                                                                       | F Off 11 C                                               | F0"                      | 0.1                                                             |
| Fee:                                 | For Office Use On                                                   | ly For Office L<br>FA Number:                  | ose Only For Offi           | ce Use Only<br>Record ID:                                             | For Office Use O                                         | nly For Office U         | PE Number:                                                      |
| 320.                                 |                                                                     | Decignated Emply                               |                             | Received Do                                                           |                                                          |                          | 4555                                                            |
| Late Fee:                            | □ Y □x N                                                            | Designated Emplo                               | jheri y                     | Received By:                                                          | joshua s                                                 |                          | Date: 11-30-21                                                  |
| Check One:                           | ☑ New                                                               | Transfer                                       | Reactivate                  | Changes (pleas                                                        | e specify): 10599                                        | 90                       |                                                                 |

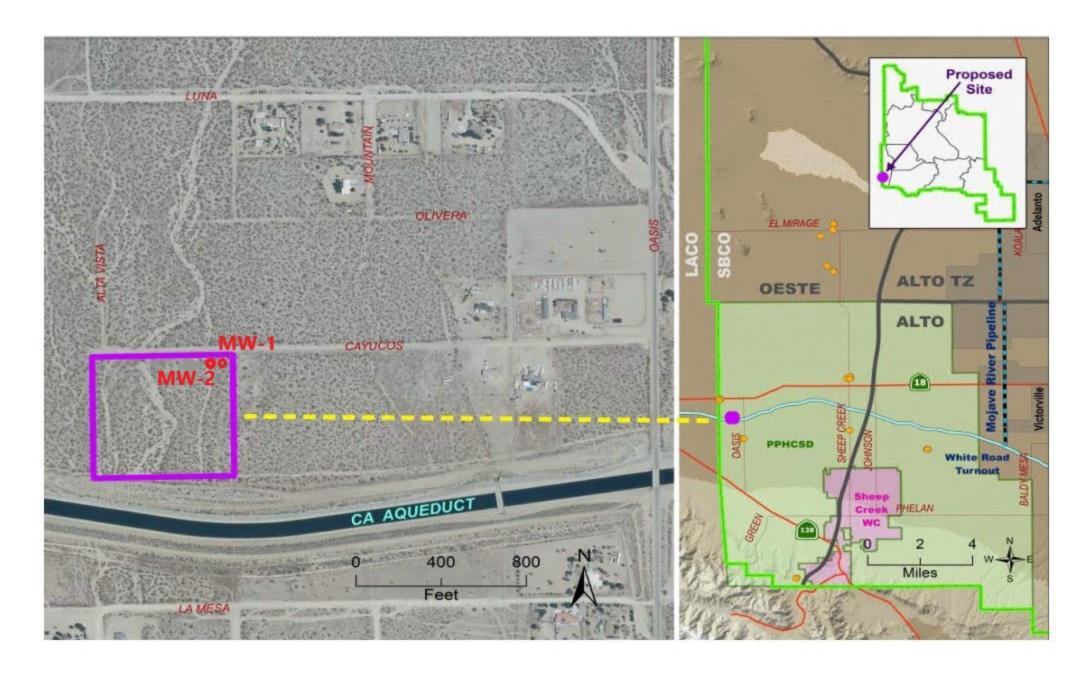
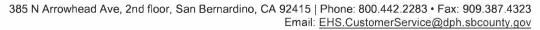




FIGURE 1. SITE LOCATION





Public Health Environmental Health Services www.SBCounty.gov www.sbcounty.gov/dph/dehs Phone: (800) 442-2283



# CATION FOR WELL DEDMIT

|                  |                              | APPLIC                   | AHOI                     | N FO                   | R WELL PERMIT                    |                                               |                      |                    |
|------------------|------------------------------|--------------------------|--------------------------|------------------------|----------------------------------|-----------------------------------------------|----------------------|--------------------|
|                  | THIS SECTION TO BE           | COMPLETED I              | BY APPL                  | ICAN                   | T • HEALTH PERMITS A INFORMATION | RE NOT TRAN                                   | SFERABLE             |                    |
| Property Owner   | Mojave Water A               |                          | 111011                   |                        |                                  |                                               | Phone Numb           | oer (760) 946-7061 |
| Site Address 53  | 35 Cayucos Rd                |                          |                          | City F                 | Pinon Hills                      | State CA                                      | <sup>Zip</sup> 9237  | 72                 |
|                  | Number 3099081               | 01                       |                          | Email                  |                                  |                                               |                      |                    |
| Township         | N/S Tier 5N                  |                          |                          | EW Range 7W Section 30 |                                  |                                               |                      |                    |
| Well Head        | Latitude (decimal) 34.48     | 7845                     | -                        | Longi                  | tude (decimal) -117.650          | 374                                           |                      |                    |
| Property Owner's | Mailing Address 13846 Co     | onference Cer            | nter Dr.                 |                        | Apple Valley                     | State CA                                      | Zip 9230             | )7                 |
|                  |                              | 2-1                      | CONSU                    | LTANT                  | INFORMATION                      |                                               |                      | May Department     |
| Name of Consulta | <sup>ant</sup> Hargis and As | sociates, I              | nc.                      | Email                  | SPRAZEN@HAF                      | RGIS.COM                                      | Phone Numb           | oer 858-410-7404   |
| Address 9171     | Towne Centre                 | Drive, Suite             | e 375                    | City                   | San Diego                        | State CA                                      | <sup>Zip</sup> 9212  | 22                 |
| Name of Driller  | DC Lievin Deilli             | 3 – REGIST               | ERED W                   | ELL C                  | DRILLER INFORMATION              | E THE YEAR THE                                | Phone Numb           | oer 562-981-8575   |
|                  | BC Liovin Drilli             | ng, inc.                 |                          | 1                      |                                  |                                               |                      | 562-981-8575       |
| Email            |                              |                          |                          | jack                   | @abcdrilling.com                 | C-57 License Nun                              | <sup>nber</sup> 4229 | 04                 |
| Return well pe   | ermit to   Well Drille       | er 🗌 Cons                |                          |                        | Property Owner                   | Return by                                     | ☐ Mail               | ■ Email            |
|                  |                              |                          |                          |                        | OF WORK                          | STATE OF BUILDING                             |                      |                    |
| ■ New            |                              |                          | construc                 |                        | 1 = " =                          | ☐ Destruc                                     |                      |                    |
| Date of Work     | 1/10/2022                    | Start Date 1/1(          |                          |                        | Completion Date 1/31/2022        | Estimated groundw                             | vater depth 55       | 60-600 ft          |
|                  |                              | offine the Parish Street |                          | WEL                    | L TYPE                           |                                               |                      |                    |
| ☐ Agriculture    |                              |                          | thermal                  |                        | Ĺ                                | Industrial                                    |                      |                    |
| ☐ Cathodic       | /PWS/City - Specify Use B    | ☐ Horiz                  |                          |                        |                                  | <ul><li>Monitoring/Obs</li><li>Test</li></ul> | servation            |                    |
| Use:             | /FWS/City - Specify Use b    |                          | dential – d<br>munity we |                        | be used as a L                   | ☐ Other                                       |                      |                    |
|                  |                              |                          | 6 – A                    | NNUL                   | AR SEAL                          |                                               |                      |                    |
| Seal Depth (ft   | .)21                         |                          |                          |                        |                                  |                                               |                      |                    |
| ☐ Driven Co      | nductor Diameter (in.)       |                          |                          |                        | Wall (gauge) (in.)SCH 8          | 30 🔳 Drilling m                               | ethod Air            | : Rotary           |
| ■ Sealing Ma     | aterialCement Ben            | tonite Gr                | out                      |                        | Thickness (in.) 3                |                                               |                      |                    |
| Sealing materia  | I shall be placed in one con | tinuous pour. Anni       | ular seal t              | hicknes                | ss must be at least 2 inches     | for public water s                            | upply wells.         |                    |
|                  | ITEMS 7 THROUGH              | 1 10 TO BE EST           | IMATED                   | FOR                    | NEW WELLS, EXACT F               | OR ALL OTHER                                  | WELLS                | TENEDERS.          |
| Proposed Depth o | of Well (ft.) CEO            | Existing                 | 7 -<br>Depth of W        |                        | NSIONS                           | Diameter of Bo                                | ore (in.) 10         |                    |
| es ou Wallster   | , ,050                       |                          |                          |                        | NOTALLED                         |                                               | 110                  |                    |
| Cooling Ma       | torial ATSM/                 | AWWA/APPI                | 8 - CAS                  | SING I                 | NSTALLED                         |                                               |                      |                    |
| ■ Casing Ma      |                              |                          |                          |                        | Diameter (in )                   |                                               | Mall (Ca             |                    |
|                  | om (ft.)<br>560              | To (ft.)                 |                          |                        | Diameter (in.)                   |                                               | Wall (Ga             |                    |
|                  | 500                          | U                        |                          | +                      | 4                                |                                               | ЗСП                  | 00                 |
| Gravel Pack      | Yes                          |                          |                          |                        | From (ft.) 650                   | To (ft.                                       | 555                  |                    |
| Specify Other    | Rentonite Se                 |                          |                          |                        | From (ft.) 555                   | To (ft.                                       |                      |                    |
| Backfill Materi  | al Deritornic de             | <i>-</i>                 |                          |                        | 110111(10.)000                   | 10 (11.                                       | , <del></del> ·      |                    |

|                                                                                                                                                                                                                                                                                                                 | 9 - PERFORATION                                                   | IS (list all if a                 | pplicable)                                    |                                   |                                |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------|--|--|--|--|--|--|
| From (ft.) 560                                                                                                                                                                                                                                                                                                  | To (ft.)640                                                       | Well Screen S                     | Size 0.020                                    | Pumping Rate                      | (gpm) unkown                   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 | 10 - SEALED ZONI                                                  | ES (list all if a                 | applicable)                                   |                                   |                                |  |  |  |  |  |  |
| From (ft.) 555                                                                                                                                                                                                                                                                                                  |                                                                   | To (ft.) 0                        |                                               |                                   |                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 | 11 – P                                                            | LOT PLAN                          |                                               |                                   | <b>经生产工作的</b>                  |  |  |  |  |  |  |
| a) In perspective to the well site, sketch and label the following items on a separate paper: well lot property lines, other wells (include abandoned wells), sewage disposal systems (sewers, septic tanks, leaching fields, seepage pits, cesspools), lakes and ponds, watercourses and animals or fowl kept. |                                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
| b) Indicate the distance, in <b>feet</b> , of scale (½ inch = 100 feet). Show 500 feet.                                                                                                                                                                                                                         |                                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
| c) None of the above is within                                                                                                                                                                                                                                                                                  | 500 feet.                                                         |                                   | ,                                             |                                   |                                |  |  |  |  |  |  |
| d) Solid or Liquid Disposal Site wit                                                                                                                                                                                                                                                                            |                                                                   | ☐ Yes                             | ☑ No                                          | Location                          |                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 | 2 - METHOD OF CONST                                               |                                   |                                               |                                   | ha madhad abab ba ta           |  |  |  |  |  |  |
| Provide the method of construction/destr<br>accordance with the standards recomme<br>standards shall also be followed for publi                                                                                                                                                                                 | nded in the California De                                         |                                   | ·                                             |                                   |                                |  |  |  |  |  |  |
| I will submit water well drillers report to E well/borings in accordance with the perm Monitoring wells will be constructed with 2" or 4" flus bentonite plug will be placed and hydrated with clean                                                                                                            | it application and Water \<br>h thread PVC, filter pack will be c | Well Standard<br>lean washed sand | s Bulletin 74-81 & 7 and placed with tremie t | 74-90.<br>to at least 2' above th | ne slotted well screen, a 2-5' |  |  |  |  |  |  |
| pipe from the top of the bentonite to within 2' of the                                                                                                                                                                                                                                                          |                                                                   | ill finish the install            | lation.                                       |                                   | nesimenselsen som              |  |  |  |  |  |  |
| I have read this application and agree to                                                                                                                                                                                                                                                                       |                                                                   |                                   |                                               | formed.                           |                                |  |  |  |  |  |  |
| Property Owner's XII. Haussen                                                                                                                                                                                                                                                                                   |                                                                   |                                   | Da                                            | ite 11/29/2021                    | 1                              |  |  |  |  |  |  |
| Print Property Owner's Name  Robert Ha                                                                                                                                                                                                                                                                          | mpson                                                             |                                   |                                               | 11 011 0001                       |                                |  |  |  |  |  |  |
| C-57 Contractor's X                                                                                                                                                                                                                                                                                             | A)                                                                |                                   | Da                                            | te 12/13/2                        | 2021                           |  |  |  |  |  |  |
| Print Contractor's Name  Ivan Liovi                                                                                                                                                                                                                                                                             | $\frac{1}{n}$                                                     |                                   |                                               |                                   | 200                            |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 | ISPOSITION OF PERMIT                                              | Γ For Office                      | Hea Only DISBO                                | SITION OF PER                     | OMIT                           |  |  |  |  |  |  |
| X Sent to Water Agency                                                                                                                                                                                                                                                                                          | ISPOSITION OF FERMI                                               | roi Office                        | Permit Number:                                | 2021120819                        |                                |  |  |  |  |  |  |
| Water Agency conditions or recommendat                                                                                                                                                                                                                                                                          | ions attached                                                     |                                   | Expiration Date:                              | 6-14-2022                         |                                |  |  |  |  |  |  |
| Denied                                                                                                                                                                                                                                                                                                          | ions attached                                                     |                                   | WP Number:                                    | WP0037565                         | 5                              |  |  |  |  |  |  |
| Approved subject to the following:                                                                                                                                                                                                                                                                              |                                                                   |                                   | VVI INDITIDEL.                                | 1 111 0007 000                    | ,                              |  |  |  |  |  |  |
| Notify the Division's Safe Driving A.  of the following operations: (I appointments may result in a                                                                                                                                                                                                             | nspections are conducted M                                        |                                   |                                               |                                   |                                |  |  |  |  |  |  |
| Prior to sealing of the ani                                                                                                                                                                                                                                                                                     | nular space or filling of the co                                  | onductor casing                   |                                               |                                   |                                |  |  |  |  |  |  |
| After installation of the su                                                                                                                                                                                                                                                                                    | rface protective slab and pu                                      | mping equipme                     | nt.                                           |                                   |                                |  |  |  |  |  |  |
| After installation of the su                                                                                                                                                                                                                                                                                    | rface features.                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
| <ul> <li>During destruction of wel</li> </ul>                                                                                                                                                                                                                                                                   | s, prior to pouring the sealin                                    | g material.                       |                                               |                                   |                                |  |  |  |  |  |  |
| B. 🕅 Submit to the Division, within                                                                                                                                                                                                                                                                             | thirty (30) days after comple                                     | etion of work, a                  | copy of:                                      |                                   |                                |  |  |  |  |  |  |
| 🛚 Water Well Driller's Repo                                                                                                                                                                                                                                                                                     | rt Bacterial Analys                                               | sis 🗌 Inc                         | organic Chemical Ana                          | llysis 🔲 Ge                       | eneral Physical                |  |  |  |  |  |  |
| Radiological Analysis                                                                                                                                                                                                                                                                                           | ☐ Nitrate as Nitro                                                | gen 🗌 Or                          | ganic Chemical Analy                          | /sis 🔲 Ge                         | eneral Mineral                 |  |  |  |  |  |  |
| Comments                                                                                                                                                                                                                                                                                                        |                                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 |                                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 |                                                                   |                                   |                                               |                                   |                                |  |  |  |  |  |  |
| For Office Use Only For C                                                                                                                                                                                                                                                                                       | office Use Only For Office                                        | ce Use Only                       | For Office Use On                             | ly For Office U                   | lse Only                       |  |  |  |  |  |  |
| Fee: 320.00                                                                                                                                                                                                                                                                                                     |                                                                   | Record ID:                        |                                               |                                   | PE Number: 4555                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                 | d Employee:<br>TÎ V                                               | Received By:                      | joshua s                                      |                                   | Date: 11-30-21                 |  |  |  |  |  |  |
| Check One: New ☐ Transfer                                                                                                                                                                                                                                                                                       | ☐ Reactivate                                                      | Changes (pleas                    |                                               | 5989                              |                                |  |  |  |  |  |  |

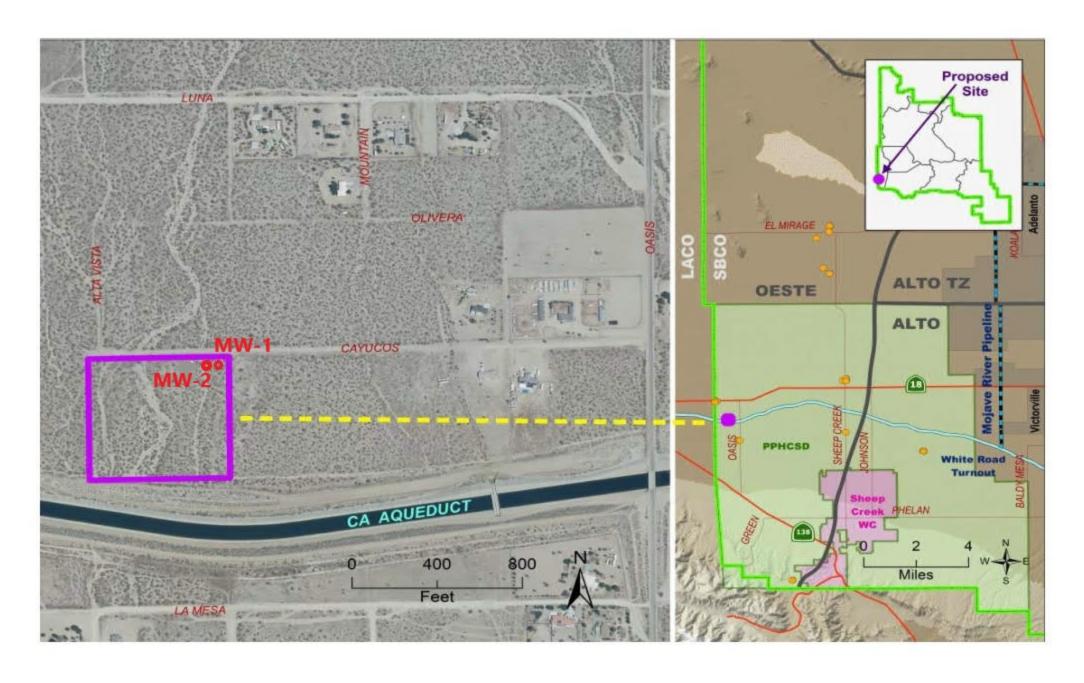



FIGURE 1. SITE LOCATION

# APPENDIX B LITHOLOGIC LOGS

### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION RECOVERY/ LAB SAMPLE GRAPHIC Reaction DEPTH LITHOLOGIC DESCRIPTION DIAGRAM LOG (feet) USC! OF MATERIAL -Above Ground Monument Vaul Utility clearance backfill Concrete [0-3] Neat Cement -Grout with 5% Bentonite [3-22'] 4-inch Sch-80 PVC [0-560'] 10 Stainless Steel Centralizer SW-SAND WITH SILT AND GRAVEL (20/70/10) Brown ۰. ، ، ، 15 SM (10YR 4/3), dry to slightly moist, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; some coarse sand may be crushed gravel; gravel size indeterminate. SILTY SAND (5/75/20) Dark grayish brown (10YR \_\_\_\_\_ $\mathsf{SM}$ 20 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded; trace gravel; micaceous. 22-Bentonite Chips With 8x16 No. 12 SP-SAND WITH SILT (0/90/10) Dark grayish brown SM 25 (10YR 4/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. · . SILTY SAND (0/80/20) Brown (10YR 4/3), dry, fine-SM 30 to very fine-grained, well sorted / poorly graded, angular; micaceous. SILTY SAND (0/60/40) Dark yellowish brown (10YR · . SM 35 3/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; grains predominantly granitic. SP-SN SAND WITH SILT (0/90/10) Brown (10YR 4/3), dry,

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 40 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SAND (5/90/5) Dark grayish brown (10YR 4/2), dry, SP 45 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace silt; trace gravel. SAND WITH SILT (5/85/10) Dark grayish brown SM 50 (10YR 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SW-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), 55 SM dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP. SAND WITH SILT AND GRAVEL (20/70/10) Brown SM 60 (10YR 4/3), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; some coarse sand may be crushed gravel; few possible schist clasts; few carbonate-cemented nodules, SAND WITH SILT (0/90/10) Dark yellowish brown SP-SM 65 (10YR 4/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Same as above. SM 70 SAND (0/95/5) Brown (10YR 4/3), dry, fine-grained, SP 75 trace medium to coarse, well sorted / poorly graded, angular to subangular; trace silt. SP-SN SAND WITH SILT (0/90/10) Yellowish brown (10YR

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 80 5/4), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular. SAND (0/95/5) Brown (10YR 5/3), dry, fine- to SP 85 coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt. . \_\_\_\_ SILTY SAND (0/85/15) Brown (10YR 5/3), dry, fine-SM 90 to coarse-grained, poorly sorted / well graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Light olive brown (2.5Y 5/3), fine- to SP 95 medium-grained, trace coarse, moderately sorted/graded, angular to subangular; trace silt. SW-SAND WITH SILT AND GRAVEL (30/60/10) Light SM 100 olive brown (2.5Y 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; some coarse sand may be crushed gravel. SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), dry, ML105 nonplastic; sand fine- to medium-grained, predominantly fine. SANDY SILT (0/30/70) Sand fine-grained, trace -----ML110 medium to coarse, otherwise same as above. SILTY SAND (0/70/30) Dark grayish brown (2.5Y ٠. بــ SM 115 4/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SP SAND (0/95/5) Grayish brown (2.5Y 5/2), dry,

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 120 fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace silt. SAND (0/95/5) Olive brown (2.5Y 4/3), dry, fine- to SW ۰. ، ، ، 125 coarse-grained, poorly sorted / well graded, angular to subangular; trace silt. SP-SAND WITH SILT (10/80/10) Brown (10YR 4/3), dry, 130 SM fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (5/75/20) Yellowish brown (10YR 5/4), نــنــ SM 135 dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (10/60/30) Dark grayish brown (2.5Y ٠.... SM 140 4/2), otherwise same as above. \_\_\_\_ SILTY SAND (5/65/30) Otherwise same as above. SM 145 SP-SAND WITH SILT (0/90/10) Dark grayish brown 150 $\mathsf{SM}$ (2.5Y 4/2), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; micaceous. SILTY SAND (0/80/20) Olive brown (2.5Y 4/3), dry, ٠. نــ SM 155 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SN SAND WITH SILT (0/90/10) Light olive brown (2.5Y

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 160 5/3), otherwise same as above. SP-SAND WITH SILT (0/90/10) Fine- to very 165 SM fine-grained, trace medium, well sorted / poorly graded, otherwise same as above. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SP-SM 170 5/3), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), SM 175 dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (5/75/20) Brown (10YR 4/3), dry, . \_\_\_\_ $\mathsf{SM}$ 180 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Olive brown (2.5Y 4/4), dry, fine- to SP 185 coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; possible trace gravel, some coarse sand may be crushed gravel. \_\_\_\_ SILTY SAND WITH GRAVEL (30/40/30) Brown SM 190 (10YR 5/3), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; some coarse sand may be crushed gravel. SP-SAND WITH SILT (5/85/10) Yellowish brown (10YR 195 SM 5/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP SAND (0/95/5) Yellowish brown (10YR 5/4), dry,

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 200 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; trace silt. SAND (0/95/5) Fine- to coarse-grained, SP 205 predominantly fine, moderately sorted/graded, otherwise same as above. SAND (0/95/5) Olive brown (2.5Y 4/4), dry, fine- to SP 210 medium-grained, predominantly fine, moderately sorted/graded, angular; trace silt. SW-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), 215 SM dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Yellowish brown (10YR 5/4), dry, fine-SW 220 to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt. SAND WITH SILT (0/90/10) Brown (10YR 5/3), dry, SP-SM 225 fine- to very fine-grained, trace medium, well sorted / poorly graded, angular; approximately 10%-20% gravel noted at top of core barrel (223-223.5 feet), consistent with cuttings from grab sample. SAND (5/90/5) Light yellowish brown (10YR 6/4), dry, SP 230 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; trace fine gravel, some coarse sand may be crushed gravel. SAND (5/90/5) Yellowish brown (10YR 5/4), dry, fine-٠. ، ، : SW 235 to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace fine gravel, some coarse sand may be crushed gravel. SW-SM SAND WITH SILT (10/80/10) Otherwise same as

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 GROUND SURFACE ELEV: 3466.2 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 240 above; gravel appears to be broken fragments of larger clasts. SP-SAND WITH SILT (0/90/10) Yellowish brown (10YR 245 SM 5/4), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SAND (T/95/5) Dark yellowish brown (10YR 4/4), dry, SP 250 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. SP-SAND WITH SILT (0/90/10) Dark yellowish brown SM 255 (10YR 4/4), dry, fine-grained, well sorted / poorly graded, subangular. SAND (10/90/T) Dark grayish brown (2.5Y 4/2), dry, SW 260 fine- to coarse-grained, poorly sorted / well graded, SM angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (0/80/20) Olive brown (2.5Y 4/4), dry, medium dense, fine- to very fine-grained, well sorted / poorly graded, subangular. ٠. SM 265 SILTY SAND (0/80/20) Brown (10YR 5/3), dry, fineto medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. -----SANDY SILT (0/30/70) Light olive brown (2.5Y 5/3), ML270 dry, nonplastic; sand fine- to very fine-grained, trace medium to coarse. SILTY SAND (0/60/40) Light olive brown (2.5Y 5/3), · .\_\_ SM 275 dry, fine- to very fine-grained, trace medium, well sorted / poorly graded, angular. SM ٠. SILTY SAND (0/60/40) Dark grayish brown (2.5Y

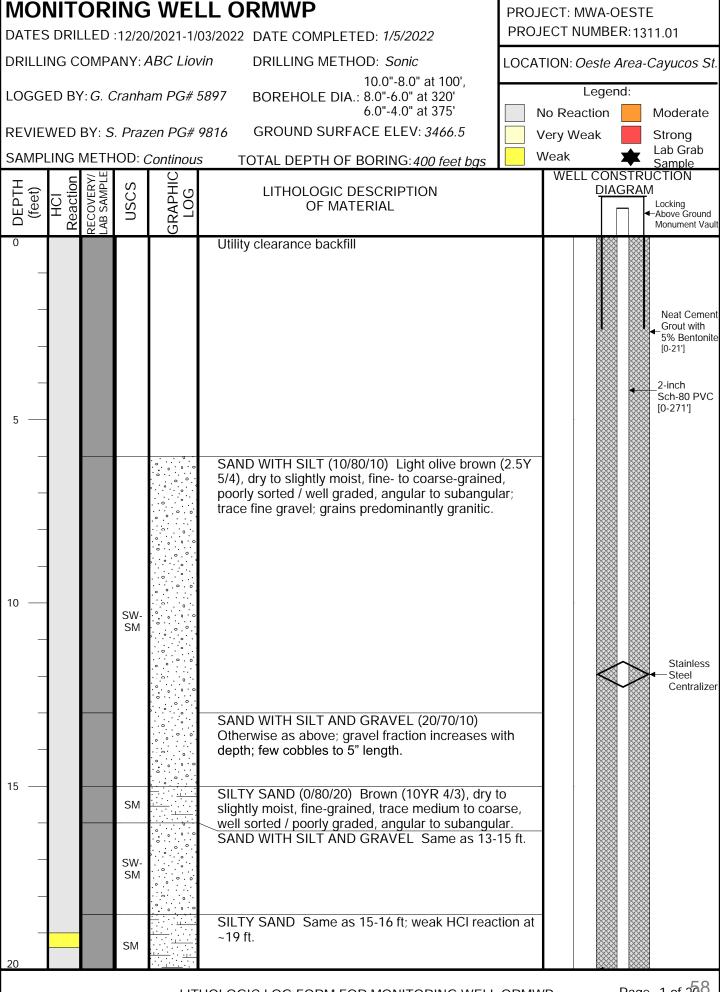
# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 GROUND SURFACE ELEV: 3466.2 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 280 4/2), dry, fine- to very fine-grained, with coarse, gap graded, angular to subangular; possibly interbedded. SANDY SILT (0/25/75) Light olive brown (2.5Y 5/3), ML 285 dry, nonplastic; sand fine- to very fine-grained, trace medium. SANDY SILT (0/30/70) Grayish brown (2.5Y 5/2), ML290 otherwise same as above. SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, ٠. SM 295 fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SANDY SILT (0/40/60) Dark grayish brown (2.5Y ML 300 4/2), dry, low plasticity; sand very fine- to medium-grained. SANDY SILT (0/40/60) Dark grayish brown (2.5Y ML305 4/2), dry, nonplastic; sand very fine- to coarse-grained, predominantly fine. SILTY SAND (0/80/20) Dark grayish brown (2.5Y ٠.... $\mathsf{SM}$ 310 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Grayish brown (2.5Y 315 SM 5/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular. SAND WITH SILT (0/90/10) Same as above. SP-SN

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 GROUND SURFACE ELEV: 3466.2 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 320 SP-SAND WITH SILT (0/90/10) Light olive brown (2.5Y 325 SM 5/3), fine-grained, trace medium, otherwise same as SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), dry, . \_\_\_\_ SM 330 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Olive brown (2.5Y 4/3), SM 335 dry, fine- to very fine-grained, well sorted / poorly graded, angular; micaceous. SAND WITH SILT (5/85/10) Yellowish brown (10YR SP-SM 340 5/4), dry, medium dense, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace gravel to 1" length; thin silty interbed at 339.3 SILT WITH SAND (0/20/80) Dark yellowish brown ML345 (10YR 4/4), dry, low to medium plasticity; sand fine-grained; trace clay. -----SANDY SILT (0/40/60) Low plasticity; sand fine- to ML350 medium-grained, trace coarse, otherwise same as above. SILTY SAND (5/75/20) Yellowish brown (10YR 5/4), ٠. SM 355 dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP-SN SAND WITH SILT (0/90/10) Brown (10YR 5/3), dry,

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate **GROUND SURFACE ELEV: 3466.2** REVIEWED BY: S. Prazen PG# 9816 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 360 fine-grained, trace medium, well sorted / poorly graded, angular to subangular. SILTY SAND (0/75/25) Grayish brown (10YR 5/2), . . . . . SM 365 dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP. SAND WITH SILT (5/85/10) Brown (10YR 4/3), trace $\mathsf{SM}$ 370 gravel, otherwise same as above. SILTY SAND (0/85/15) Light olive brown (2.5Y 5/4), \_\_\_\_ SM 375 dry, fine- to medium-grained, trace coarse, moderately sorted/graded, angular to subangular. SAND (10/85/5) Light olive brown (2.5Y 5/4), dry, SW 380 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (0/60/40) Brown (7.5YR 4/4), dry, نب. SM 385 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SM 390 5/4), dry, fine- to very fine-grained, trace medium, well sorted / poorly graded, angular. SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), dry, - \_\_\_ SM 395 fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular; possible trace gravel, some coarse sand may be crushed gravel. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SP-SN

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction **GROUND SURFACE ELEV: 3466.2** REVIEWED BY: S. Prazen PG# 9816 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 400 5/3), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; micaceous. SILTY SAND (10/70/20) Grayish brown (2.5Y 5/2), SM 405 dry, fine-grained, trace medium, with coarse, gap graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel; possibly interbedded. SANDY SILT (0/30/70) Olive brown (2.5Y 4/3), dry, ML 410 nonplastic; sand fine- to medium-grained, predominantly fine. SILTY SAND (5/75/20) Olive brown (2.5Y 4/3), dry, . \_\_\_\_ SM 415 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, . \_\_\_\_ SM 420 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. · : <u>- - -</u> SILTY SAND (0/85/15) Light olive brown (2.5Y 5/4), SM 425 dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; with small carbonate nodules. · . . \_ \_ SILTY SAND (0/70/30) Dark grayish brown (2.5Y SM 430 4/2), dry, fine- to very fine-grained, well sorted / poorly graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Very dark grayish brown 435 SM (2.5Y 3/2), dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular. . \_\_\_\_ SM SILTY SAND (0/70/30) Very dark grayish brown 440

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate **GROUND SURFACE ELEV: 3466.2** REVIEWED BY: S. Prazen PG# 9816 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 440 (2.5Y 3/2), dry, fine- to very fine-grained, well sorted / poorly graded, subangular. SP-SAND WITH SILT (0/90/10) Olive brown (2.5Y 4/3), 445 SM dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular. SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), dry, ML450 nonplastic; sand very fine- to coarse-grained, predominantly fine; coarser grains are carbonate-cemented fragments. SANDY SILT (0/30/70) Olive brown (2.5Y 4/4), ML 455 otherwise same as above. SANDY SILT (0/30/70) Same as above. ML460 SW-SAND WITH SILT (5/85/10) Light olive brown (2.5Y ۰. ، ، ، 465 SM 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (5/75/20) Light olive brown (2.5Y 5/3), نند . SM 470 dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, gravel fraction composed of carbonate-cemented nodules, some coarse sand may be crushed gr SILTY SAND (0/80/20) Olive (5Y 4/3), dry, fine- to ٠. SM 475 medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP SAND (0/95/5) Light olive brown (2.5Y 5/3), dry,


### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 480 fine-grained, trace medium, well sorted / poorly graded, angular; trace silt. SP-SAND WITH SILT (0/90/10) Otherwise same as 485 SM above. SILTY SAND (0/80/20) Olive brown (2.5Y 4/4), dry, SM 490 fine-grained, trace medium to coarse, well sorted / poorly graded, angular; with probable thin silt interbed(s) based on small fragments of fines. SILTY SAND (0/75/25) Yellowish brown (10YR 5/4), \_\_\_\_ $\mathsf{SM}$ 495 dry, fine- to very fine-grained, well sorted / poorly graded, angular. SILT WITH SAND (0/20/80) Light olive brown (2.5Y ML 500 5/3), dry, low plasticity; sand fine- to medium-grained, ML predominantly fine. SANDY SILT (0/30/70) Sand fine- to coarse-grained, predominantly fine, otherwise same as above: stiff: with few small carbonate nodules. SILT WITH SAND (0/20/80) Light olive brown (2.5Y ML505 5/3), dry, low plasticity; sand fine- to medium-grained, predominantly fine. SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, ٠.... SM 510 fine-grained, trace medium, well sorted / poorly graded, angular. SILT WITH SAND (0/20/80) Olive brown (2.5Y 4/4), ML515 dry to slightly moist, low to medium plasticity; sand fine- to coarse-grained, most coarser grains are carbonate-cemented fragments or nodules. ML SILT WITH SAND (0/15/85) Low plasticity, otherwise

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 **GROUND SURFACE ELEV: 3466.2** Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 520 same as above. SILT WITH SAND (0/15/85) Olive brown (2.5Y 4/3), ML 525 otherwise same as above. SILT (0/10/90) Light olive brown (2.5Y 5/4), slightly ML 530 moist, low to medium plasticity; trace fine to coarse sand; most coarser grains are carbonate-cemented fragments or nodules. SILT WITH SAND (0/20/80) Light olive brown (2.5Y ML 535 5/4), slightly moist, low to medium plasticity; sand fineto coarse-grained, most coarser grains are carbonate-cemented fragments or nodules; trace clay. SILT WITH SAND (T/20/80) Light olive brown (2.5Y ML540 5/4), slightly moist, low to medium plasticity; sand fineto coarse-grained, most coarser grains are carbonate-cemented fragments or nodules; trace gravel, gravel fraction are carbonate-cemented fragments. SILT WITH SAND (0/20/80) Olive brown (2.5Y 4/4), ML545 slightly moist, low to medium plasticity; sand fine- to coarse-grained, most coarser grains are carbonate-cemented fragments or nodules. SANDY SILT (0/30/70) Dark yellowish brown (10YR ----ML550 4/4), slightly moist, low plasticity; sand fine-grained, trace medium. SAND WITH SILT (0/90/10) Yellowish brown (10YR SP-555 SM 5/6), moist, fine- to medium-grained, trace coarse, moderately sorted/graded, angular to subangular. SAND (0/95/5) Trace silt, otherwise same as above. SP

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 GROUND SURFACE ELEV: 3466.2 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE Reaction DEPTH LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG USC! OF MATERIAL 560 0.020-Inch Slotted Screen [560-640'] SAND (5/95/T) Fine- to coarse-grained, poorly sorted SW ۰. ، ۰ ، ۰ 565 / well graded, trace fine gravel, otherwise same as above. °. . . . . . SAND (0/100/T) Lacks gravel, otherwise same as SW 570 above SAND (5/95/T) Trace fine gravel, otherwise same as SW above. SILTY SAND (0/80/20) Dark yellowish brown (10YR SM . \_\_\_\_ 580 4/4), wet, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SW-SAND WITH SILT (10/80/10) Yellowish brown (10YR °. . . . . . 585 SM 5/6), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace fine gravel, some coarse sand may be crushed gravel. GRAVEL WITH SAND (75/20/5) Yellowish brown GP 590 (10YR 5/4), wet, fine, larger clasts may be broken by drilling; sand fine- to coarse-grained; trace silt. SAND WITH GRAVEL (20/75/5) Yellowish brown °. . . . . . SW 595 (10YR 5/4), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; gravel fine, but larger clasts may be broken by drilling; some coarse sand may be crushed gravel. GP-GM GRAVEL WITH SILT AND SAND (60/30/10)

#### MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate **GROUND SURFACE ELEV: 3466.2** REVIEWED BY: S. Prazen PG# 9816 Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION RECOVERY/ LAB SAMPLE GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 600 Yellowish brown (10YR 5/4), wet, fine, larger clasts may be broken by drilling; sand fine- to coarse-grained; 4-inch cobble recovered. SILTY SAND (5/70/25) Brown (10YR 5/3), wet, fine-. . . . . SM 605 to coarse-grained, poorly sorted / well graded, angular to subangular; trace fine gravel, some coarse sand may be crushed gravel. SAND WITH GRAVEL (40/55/5) Pale brown (10YR SW 610 6/3), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; gravel fine, but larger clasts may be broken by drilling; some coarse sand may be crushed gravel; locally carb SILTY SAND (0/60/40) Light olive brown (2.5Y 5/4 to . \_\_\_\_ SM 615 5/6), wet, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; fine sand fraction may be higher based on poor cuttings recovery. SILTY SAND (0/60/40) Same as above. SM ٠. 620 · · · · · · (No recovery; probably dominated by fine sand, same SM? 625 as above). . \_\_\_\_ (Minimal recovery; slight increase in medium to SM? 630 coarse sand fraction, otherwise probably same as above). SP-SAND WITH SILT (0/90/10) Yellowish brown (10YR 635 SM 5/4), wet, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular. End Cap [640-640.34] . .\_\_ SM SILTY SAND (0/85/15) Yellowish brown (10YR 5/4)

# MONITORING WELL ORMW1 PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 GROUND SURFACE ELEV: 3466.2 Weak Strong SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bgs Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION DIAGRAM LOG (feet) OF MATERIAL 640 wet, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. (No recovery; probably dominated by fine sand, same SM? نند as above). (Minimal recovery; slight increase in medium to SM? 650 coarse sand fraction, otherwise probably same as above). 652-Slough [652-660'] SILTY SAND (5/80/15) Brown (10YR 5/3), wet, fine-SM 655 to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace fine gravel, some coarse sand may be crushed gravel. SW-SAND WITH SILT (10/80/10) Brown (10YR 4/3), wet, SM 660 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; MLtrace gravel, some coarse sand may be crushed gravel; most coarser grains and clasts are carbonate-cemented fra SILT (0/10/90) Yellowish brown (10YR 5/4), wet, very stiff, low to medium plasticity; trace fine to coarse 665 sand, most coarser grains are carbonate-cemented fines; trace clay. 670



| MOI                                      | AI I (          | ORI                     | ING             | WE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JECT: MWA-OES                                |                     |                                               |  |
|------------------------------------------|-----------------|-------------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|-----------------------------------------------|--|
| DATES                                    | DRIL            | LED                     | :12/20          | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                       | PROJECT NUMBER: 1311.01                      |                     |                                               |  |
| DRILLI                                   | NG C            | OMPA                    | ANY: A          | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOCA                                         | TION: Oeste Are     | a-Cayucos St.                                 |  |
| LOGGI                                    | ED BY           | ′: G. C                 | Cranha          | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                      |                                              | Legend:             | Moderate                                      |  |
| REVIE                                    | WED             | BY: <i>S</i>            | . Praz          | en PG#         | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | Very Weak           | Strong                                        |  |
| SAMPI                                    | _ING I          |                         | OD: (           | Continous      | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                            | Weak 🔺              | Lab Grab<br>Sample                            |  |
| DEPTH<br>(feet)                          | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS            | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | WELL CONST<br>DIAGR |                                               |  |
| 20 — — — — — — — — — — — — — — — — — — — |                 |                         | SW-<br>SM<br>ML |                | SAND WITH SILT (5/85/10) Brown (10YR 4/3), fine- to coarse-grained, poorly sorted / well grad angular to subangular; trace fine gravel.  SANDY SILT (5/40/55) Dark yellowish brown (1 4/4), slightly moist, nonplastic; sand fine-grained trace medium; trace gravel to 3" length.  SAND WITH SILT (0/90/10) Olive brown (2.5Y dry, fine-grained, trace medium to coarse, well s / poorly graded, angular to subangular; locally tr fine gravel (<5%). | dry,<br>led,<br>0YR<br>d,<br>4/4),<br>sorted | 21-                 | Medium Bentonite Chips With #3 Sand [21-269'] |  |
| _                                        |                 |                         | SP-<br>SM       |                | SAND WITH SILT (10/80/10) Trace fine gravel, otherwise same as above.                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                     | XXXXXXX                                       |  |
| 35 —<br>—<br>—<br>—<br>—<br>—            |                 |                         | SM              |                | SILTY SAND WITH GRAVEL (15/65/20) Olive I (2.5Y 4/3), dry, fine- to coarse-grained, poorly so well graded, angular to subangular; gravel to 1" length, angular to subangular, granitic; increase fraction at 37-38 ft; increased gravel fraction at 3ft; weak HCI reaction at 34-35 ft and 37-38 ft.                                                                                                                                                   | orted /<br>d silt                            |                     | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX        |  |

| MONITOR                   | SING      | i WEI          | LL ORMWP                                                                                                                                                                                     |         | ECT: MWA-OEST          |                    |
|---------------------------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|--------------------|
| DATES DRILLEI             | ) :12/20  | 0/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                             | PROJ    | ECT NUMBER: 13         | 11.01              |
| DRILLING COM              | PANY:     | ABC Lio        |                                                                                                                                                                                              | LOCAT   | ΓΙΟΝ: Oeste Area-      | Cayucos St.        |
| LOGGED BY: G.             | Cranha    | am PG#         | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                            |         | Legend:                | Moderate           |
| REVIEWED BY:              | S. Praz   | zen PG#        | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                             | V       | /ery Weak              | Strong             |
| SAMPLING MET              |           | Continou       | S TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                        | V       | Veak 🛊                 | Lab Grab<br>Sample |
| DEPTH (feet) HCI Reaction | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                        |         | WELL CONSTR<br>DIAGRAI |                    |
| 40                        | SM        |                | SILTY SAND WITH GRAVEL (15/65/20) Olive b<br>(2.5Y 4/3)                                                                                                                                      | rown    |                        |                    |
|                           | SP-<br>SM |                | SAND WITH SILT (0/90/10) Brown (10YR 4/3), fine- to medium-grained, predominantly fine, traccoarse, moderately sorted/graded, angular to subangular; increased medium sand fraction at ft.   | ce      |                        |                    |
| 45                        | SM        |                | SILTY SAND (10/60/30) Olive brown (2.5Y 4/3) fine gravel, otherwise same as above; weak HC reaction.                                                                                         |         |                        |                    |
| -                         | SP-<br>SM |                | SAND WITH SILT (15/75/10) Trace gravel to 31/ length, otherwise same as 41.5-44 ft.                                                                                                          | /"<br>2 |                        |                    |
|                           | SP-<br>SM |                | SAND WITH SILT (15/75/10) Trace gravel to 3½" length, otherwise same as 41.5-44 ft.                                                                                                          |         |                        | 4                  |
|                           | SM        |                | SILTY SAND (5/65/30) No HCl reaction, otherw same as 44-45 ft.                                                                                                                               |         |                        |                    |
| 50 —  55 — -              | SP-<br>SM |                | SAND WITH SILT (10/80/10) Same as 41.5-44 trace gravel to 2" length; minor color variation, b texture generally consistent.                                                                  |         |                        |                    |
| -                         | -         |                | SILTY SAND (5/70/25) Olive brown (2.5Y 4/3) t                                                                                                                                                | o dark  |                        |                    |
|                           | SM        |                | yellowish brown (10YR 4/4), dry to slightly moist<br>to medium-grained, predominantly fine, trace co<br>moderately sorted/graded, angular to subangula<br>locally trace gravel to 1" length. | arse,   |                        |                    |
| 60                        |           | <u></u>        |                                                                                                                                                                                              |         |                        | \$                 |

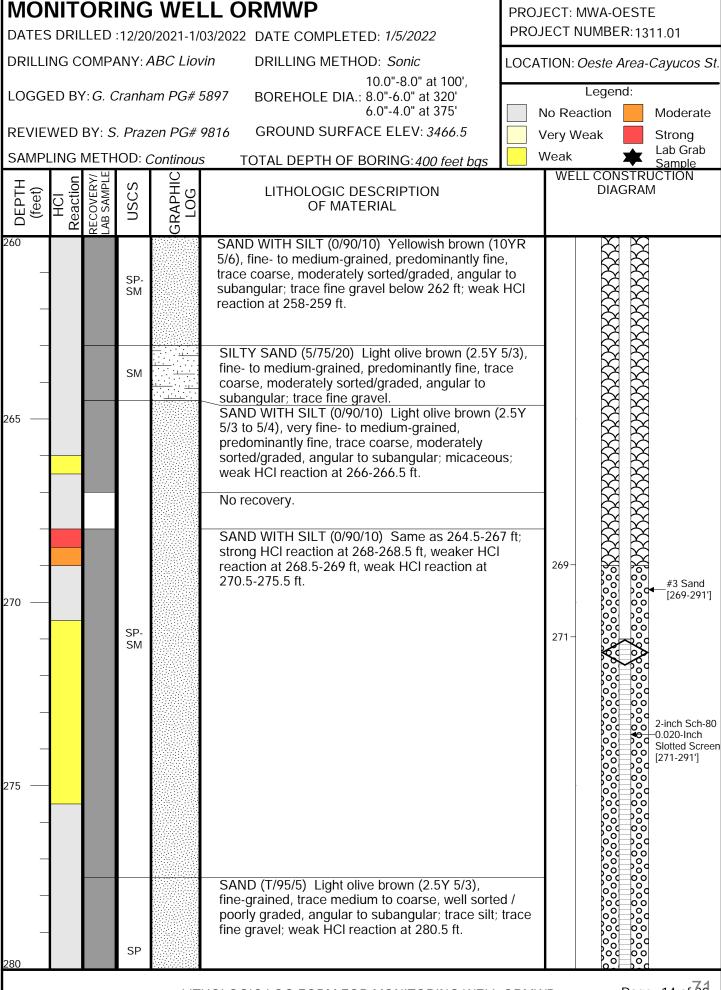
| MON                    |                    |                  |                         | PROJECT: MWA-OESTE                                                                                                                                                                                                                   |       |                               |
|------------------------|--------------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------|
| DATES D                | RILLED             | :12/20           | PROJECT NUMBER: 1311.01 |                                                                                                                                                                                                                                      |       |                               |
| DRILLING               | G COMF             | PANY:            | ABC Lio                 |                                                                                                                                                                                                                                      | LOCAT | TION: Oeste Area-Cayucos St.  |
| LOGGED                 | ЭВҮ: <i>G.</i>     | Cranha           | am PG#                  | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                    |       | Legend:  lo Reaction Moderate |
| REVIEW                 | ED BY: .           | S. Praz          | en PG#                  | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                     | V     | /ery Weak Strong              |
| SAMPLIN                |                    |                  | Continou                | S TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                | V     | Veak Lab Grab Sample          |
| DEPTH<br>(feet)<br>HCI | Reaction RECOVERY/ | USCS             | GRAPHIC<br>LOG          | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                |       | WELL CONSTRUCTION<br>DIAGRAM  |
| 60                     |                    | SM               |                         | SILTY SAND (5/70/25) Olive brown                                                                                                                                                                                                     |       |                               |
|                        | ı                  |                  |                         | (2.5Y 4/3) to dark yellowish brown (10YR 4/4)  SILTY SAND Same as above; to SAND WITH SILT, fine-grained, trace medium to coarse, otherwise same as 41.5-44 ft; probably highly disturbed due to difficulty recovering core intervi- | al.   |                               |
|                        | ı                  | SM/<br>SP-<br>SM |                         |                                                                                                                                                                                                                                      |       |                               |
| 65 —                   | ı                  | L                |                         | SILTY SAND (0/85/15) Brown (10YR 4/3), dry t                                                                                                                                                                                         | to    |                               |
| _                      | ı                  | SM               |                         | slightly moist, fine- to very fine-grained, trace me<br>to coarse, well sorted / poorly graded, angular to<br>subangular.                                                                                                            | edium |                               |
| 70 —                   | ı                  | SP               |                         | SAND (0/95/5) Olive brown (2.5Y 4/3), dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace silt.                                                                                               |       |                               |
| -                      | ı                  | SP-              |                         | SAND WITH SILT (0/90/10) Dark yellowish bro<br>(10YR 4/4), dry to slightly moist, trace coarse sa<br>otherwise same as above.                                                                                                        |       |                               |
| 75 —                   | ı                  | SM               |                         |                                                                                                                                                                                                                                      |       |                               |
|                        |                    |                  |                         | No recovery.                                                                                                                                                                                                                         |       |                               |
|                        |                    | SP-<br>SM        |                         | SAND WITH SILT Same as 71.5-76 ft; lower contact gradational.                                                                                                                                                                        |       |                               |
| 80                     |                    |                  |                         |                                                                                                                                                                                                                                      |       | <u> </u>                      |

| MONITOR                                  | RING               | WE             | LL ORMWP                                                                                                                                                                                                                                                                                                                                                   |                   | ECT: MWA-OEST           |                                         |  |  |
|------------------------------------------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|-----------------------------------------|--|--|
| DATES DRILLE                             | D :12/20           | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                           | PROJ              | PROJECT NUMBER: 1311.01 |                                         |  |  |
| DRILLING COM                             | PANY:              | ABC Lio        | vin DRILLING METHOD: Sonic                                                                                                                                                                                                                                                                                                                                 | LOCAT             | ΓΙΟΝ: Oeste Area        | -Cayucos St.                            |  |  |
| LOGGED BY: G.                            | . Cranha           | am PG#         | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                          |                   | Legend:                 | Moderate                                |  |  |
| REVIEWED BY:                             | S. Praz            | en PG#         | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                                                                           |                   | /ery Weak               | Strong                                  |  |  |
| SAMPLING MET                             |                    | Continou       | S TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                      | V                 | Veak 🙀                  | Lab Grab<br>Sample                      |  |  |
| DEPTH (feet) HCI Reaction                | LAB SAMPLE<br>USCS | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                      |                   | WELL CONSTR<br>DIAGRA   |                                         |  |  |
| 80                                       | SP-<br>SM          |                | SAND WITH SILT Same as 71.5-76 ft; lower contact gradational.                                                                                                                                                                                                                                                                                              |                   |                         | X X X                                   |  |  |
|                                          | SP                 |                | SAND (0/95/5) Brown (10YR 4/3), fine- to medium-grained, predominantly fine, trace coar moderately sorted/graded, angular to subangula trace silt.                                                                                                                                                                                                         |                   |                         | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |  |
| 85 —                                     | SP-<br>SM          |                | SAND WITH SILT (5/85/10) Olive brown (2.5Y fine- to medium-grained, predominantly fine, tra coarse, moderately sorted/graded, angular to subangular; trace gravel to 1" length.                                                                                                                                                                            |                   |                         | X X X X X X X X X X X X X X X X X X X   |  |  |
|                                          | SM                 |                | SILTY SAND (0/75/25) Very dark grayish brow                                                                                                                                                                                                                                                                                                                | n                 |                         | X<br>X                                  |  |  |
| 90 —                                     | SP-<br>SM          |                | (2.5Y 3/2), otherwise same as above.  SAND WITH SILT (5/85/10) Brown (10YR 4/3) olive brown (2.5Y 4/3), fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace graz 2" length, subangular to subrounded, >8" cobble ft; HCl reaction at 92.5 ft.  SILTY SAND (5/70/25) Light olive brown (2.5Y) | vel to<br>e at 89 |                         | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |  |  |
| 95 — — — — — — — — — — — — — — — — — — — | SM                 |                | SILTY SAND (5/70/25) Light olive brown (2.5Y fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangula trace fine gravel, increased gravel fraction to ~1 96-97 ft; weak HCI reaction at 99 ft.                                                                                                                          | ar;               |                         | KKKKKKKKKK                              |  |  |

|                 | VIT             | OR                      | ING       | WE                  | LL ORMWP                                                                                               | PRO.            | JECT: MWA-OES           | ΤΕ                 |  |
|-----------------|-----------------|-------------------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--------------------|--|
| DATES           | DRIL            | LED                     | :12/20    | )/2021-1/           | 03/2022 DATE COMPLETED: 1/5/2022                                                                       | PRO.            | PROJECT NUMBER: 1311.01 |                    |  |
| DRILLI          | NG C            | OMPA                    | ANY: A    | ABC Lio             |                                                                                                        | LOCA            | TION: Oeste Area        | a-Cayucos St.      |  |
| LOGGI           | ED BY           | /: <i>G.</i> (          | Cranha    | am PG# :            |                                                                                                        |                 | Legend:                 |                    |  |
| חבייורי         | WED             | DV. C                   | Dro-      | en PG#              | 6.0"-4.0" at 375'<br>9816 GROUND SURFACE ELEV: 3466.5                                                  |                 | No Reaction             | Moderate           |  |
|                 |                 |                         |           | en PG#<br>Continou: |                                                                                                        |                 | Very Weak Weak          | Strong<br>Lab Grab |  |
|                 |                 |                         |           |                     | i de rect age                                                                                          |                 | WELL CONSTR             |                    |  |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS      | GRAPHIC<br>LOG      | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                  |                 | DIAGRA                  | AM                 |  |
| ☐<br>100        | Re              | REC<br>LAB              |           | GR                  | CANDY CILT (0/20/70) Valleysiah krayya (10/0                                                           | E / 4\          |                         |                    |  |
| 100             |                 |                         | ML        |                     | SANDY SILT (0/30/70) Yellowish brown (10YR slightly moist, low to medium plasticity; sand fine         |                 |                         | X                  |  |
| _               |                 |                         |           |                     | medium-grained, trace coarse; lower contact gradational.                                               |                 |                         | X X                |  |
| _               |                 |                         | SM        |                     | SILTY SAND (5/70/25) Same as 94.5-100 ft; we HCI reaction at 101 ft; lower contact gradational         |                 |                         | X                  |  |
| _               |                 |                         |           |                     |                                                                                                        |                 |                         | X<br>X             |  |
|                 |                 |                         |           |                     | SAND (10/85/5) Dark grayish brown (2.5Y 4/2), fine- to medium-grained, trace coarse, moderate          | ely             |                         | X<br>X             |  |
|                 |                 |                         | SP        |                     | sorted/graded, angular to subangular; trace silt; gravel to 1" length; weak HCl reaction at 105 ft a   |                 |                         | X                  |  |
| 105 —           |                 |                         | 51        |                     | 106 ft.                                                                                                |                 |                         | X X                |  |
|                 |                 |                         |           |                     |                                                                                                        |                 |                         |                    |  |
| _               |                 |                         | SP-       |                     | SAND WITH SILT (5/85/10) Otherwise same as above; weak HCl reaction.                                   | S               |                         |                    |  |
| _               |                 |                         | SM        |                     | abovo, moaktromoacioni                                                                                 |                 |                         | <b>X</b>           |  |
| _               |                 |                         | SP        |                     | SAND (10/85/5) Same as 103-106 ft.                                                                     |                 |                         | 3                  |  |
|                 |                 |                         |           |                     | SAND WITH SILT (5/85/10) Same as 106-107.                                                              | 5 ft.           |                         |                    |  |
| _               |                 |                         | SP-       |                     |                                                                                                        |                 |                         |                    |  |
| 110 —           |                 |                         | SM        |                     |                                                                                                        |                 |                         | 3                  |  |
| _               |                 |                         |           |                     |                                                                                                        | 111             |                         | 3                  |  |
|                 |                 |                         |           |                     | SAND (10/85/5) Same as 103-106 ft; weak HCl reaction; probably highly disturbed due to difficu         |                 |                         | 3                  |  |
| _               |                 |                         | SP        |                     | recovering core interval.                                                                              | 5               |                         | <b>S</b>           |  |
| _               |                 |                         |           |                     |                                                                                                        |                 |                         |                    |  |
|                 |                 |                         |           |                     | SAND WITH SILT (5/85/10) Fine- to coarse-gra                                                           | ained,          |                         | <b>X</b>           |  |
|                 |                 |                         | SP-<br>SM |                     | predominantly medium, otherwise same as 106-<br>ft; with thin silty interbed(s) at 114 ft; probably hi | -107.5<br>iahlv |                         | <b>X</b>           |  |
| 115 —           |                 |                         |           |                     | disturbed due to difficulty recovering core interval SILTY SAND (5/80/15) Dark grayish brown (2.5      | al.             |                         | <b>X</b>           |  |
| _               |                 |                         |           | <del>'</del> :      | 4/2), fine- to coarse-grained, predominantly fine                                                      | ,               |                         | ¥<br>¥             |  |
|                 |                 |                         |           |                     | moderately sorted/graded, angular to subangula trace fine gravel, locally to 1½" length; HCl reac      |                 |                         | <b>X</b>           |  |
| _               |                 |                         | SM        |                     | 115-116 ft; weak HCl reaction at 116-120 ft.                                                           |                 |                         | X                  |  |
| _               |                 |                         | SIVI      | <u> </u>            |                                                                                                        |                 |                         | X                  |  |
|                 |                 |                         |           |                     |                                                                                                        |                 |                         | 4                  |  |
|                 |                 |                         |           |                     |                                                                                                        |                 |                         | X                  |  |
| 120             |                 |                         |           | <u> </u>            |                                                                                                        |                 |                         | 4                  |  |

| MC              | MONITORING WELL ORMWP |                         |           |                         |                                                                                                                                                                                                                                                       |           | PROJECT: MWA-OESTE                      |  |  |
|-----------------|-----------------------|-------------------------|-----------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--|--|
| DATE            | S DRII                | LLED                    | :12/20    | PROJECT NUMBER: 1311.01 |                                                                                                                                                                                                                                                       |           |                                         |  |  |
| DRIL            | LING C                | OMP                     | ANY: A    | ABC Lio                 |                                                                                                                                                                                                                                                       | LOCAT     | TION: Oeste Area-Cayucos St.            |  |  |
| LOG             | GED B                 | Y: <i>G.</i> C          | Cranha    | am PG# .                | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                     |           | Legend: lo Reaction Moderate            |  |  |
| REVI            | EWED                  | BY: S                   | . Praz    | en PG#                  | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                      | V         | ery Weak Strong                         |  |  |
| SAMI            | PLING                 |                         | IOD: (    | Continou                | S TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                 | V         | Veak Lab Grab<br>Sample                 |  |  |
| DEPTH<br>(feet) | HCI<br>Reaction       | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG          | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                 |           | WELL CONSTRUCTION<br>DIAGRAM            |  |  |
| 120             |                       | *                       | ML        |                         | SILT WITH SAND (0/15/85) Brown (10YR 5/3), slightly moist, low plasticity; sand fine- to medium-grained.                                                                                                                                              |           | XXXX                                    |  |  |
|                 | _                     |                         | SM        |                         | SILTY SAND (0/70/30) Brown (10YR 5/3), dry, to medium-grained, predominantly fine, moderal sorted/graded, angular to subangular.                                                                                                                      |           | XXXXXX                                  |  |  |
|                 |                       |                         | SP-<br>SM |                         | SAND WITH SILT (0/90/10) Fine- to coarse-grapredominantly fine, otherwise same as above.                                                                                                                                                              | ined,     | XXXX                                    |  |  |
| 125 —           | _                     |                         | ML        |                         | SANDY SILT (0/40/60) Brown (10YR 4/3), low plasticity; sand fine-grained, trace medium.                                                                                                                                                               |           | XXXXXX                                  |  |  |
|                 |                       |                         | SM        |                         | SILTY SAND (5/65/30) Brown (10YR 4/3) to da grayish brown (2.5Y 4/2), fine- to coarse-grained poorly sorted / well graded, angular to subangul trace gravel to 1½" length; weak HCl reaction at 126-127.5 ft.                                         | d,<br>ar; | KKKKKK                                  |  |  |
|                 |                       |                         | ML        |                         | SANDY SILT (0/40/60) Same as 124-126 ft.                                                                                                                                                                                                              |           |                                         |  |  |
| 130 —           |                       |                         | SM        |                         | SILTY SAND (0/80/20 to 0/60/40) Fine- to medium-grained, trace coarse, moderately sorted/graded, otherwise same as 126-128 ft; w HCl reaction at 130.5-131 ft.                                                                                        | eak       | KKKKKK                                  |  |  |
|                 |                       |                         | SP        |                         | SAND (0/95/5) Dark grayish brown (2.5Y 4/2), f medium-grained, predominantly fine, well sorted                                                                                                                                                        |           | XXXX<br>XXXX                            |  |  |
|                 |                       |                         | SP-<br>SM |                         | poorly graded, angular to subangular; trace silt. SAND WITH SILT (5/85/10) Olive brown (2.5Y fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangula trace fine gravel; weak HCl reaction at 132.5 ft a 133.5 ft. | nr;       | KKKKKK                                  |  |  |
| 135 —           | _                     |                         | SP        |                         | SAND (0/95/5) Same as 131-132 ft; generally coarsens downward.                                                                                                                                                                                        |           | XXXX<br>XXXX                            |  |  |
|                 |                       |                         | SP-<br>SM |                         | SAND WITH SILT (5/85/10) Same as 132-134 weak HCl reaction at 136-137 ft.                                                                                                                                                                             | ft;       | KKKK<br>KKKK                            |  |  |
| 140             | -                     |                         | SM        |                         | SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), to very fine-grained, locally trace medium, well s / poorly graded, angular; micaceous.                                                                                                                  |           | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |  |

| MONHORING                                           | i WEL          | L ORMWP                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    | ECT: MWA-OEST                           |                    |  |
|-----------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------|--|
| DATES DRILLED :12/2                                 | 0/2021-1/0     | 3/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT NUMBER: 1311.01            |                                         |                    |  |
| DRILLING COMPANY:                                   | ABC Liovi      |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCAT                              | ΓΙΟΝ: Oeste Area                        | -Cayucos St.       |  |
| LOGGED BY: G. Cranh                                 | am PG# 5       | 10.0"-8.0" at 100',<br>897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                           |                                    | Legend:                                 | Moderate           |  |
| REVIEWED BY: S. Pra.                                | zen PG# 9      | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | /ery Weak                               | Strong             |  |
| SAMPLING METHOD:                                    | Continous      | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                  | Veak 📥                                  | Lab Grab<br>Sample |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE USCS | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | WELL CONSTR<br>DIAGRA                   |                    |  |
| 140 ML                                              |                | SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), nonplastic; sand fine- to very fine-grained, trace                                                                                                                                                                                                                                                                                                                                                            |                                    | XX                                      |                    |  |
|                                                     |                | medium; weak HCl reaction at 140.5-141 ft. SAND (5/90/5) to SAND WITH SILT (5/85/10) Grayish brown (2.5Y 5/2), fine- to coarse-graine predominantly fine, moderately sorted/graded, at to subangular; trace fine gravel; weak HCl react 141-141.5 ft; carbonate fragment at 143 ft.                                                                                                                                                                        | ingular                            |                                         |                    |  |
| 145 — SW                                            |                | SAND WITH GRAVEL (25/70/5) Grayish brown 5/2), fine- to coarse-grained, poorly sorted / well                                                                                                                                                                                                                                                                                                                                                               |                                    |                                         |                    |  |
| SW/<br>SP-<br>SM                                    |                | graded, angular to subangular; gravel to 2½" ler trace silt.  SAND (10/85/5) to SAND WITH SILT (5/85/10) Grayish brown (2.5Y 5/2), fine- to coarse-graine locally predominantly fine, poorly to moderately sorted / well to moderately graded, angular to subangular; trace fine gravel, locally to 1½" length, increased gravel fraction at 148.5-149 ft; increased silt fraction at 151.5-152.5 ft; weak H0 reaction at 150-150.5 ft and 151.5-152.5 ft. | d,                                 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| 150 — SW/ SP- SM                                    |                | SAND (10/85/5) to SAND WITH SILT (5/85/10) Grayish brown (2.5Y 5/2), fine- to coarse-grained, locally predominantly fine, poorly to moderately sorted / well to moderately graded, angular to subangular; trace fine gravel, locally to 1½" length, increased gravel fraction at 148.5-149 ft; increased silt fraction at 151.5-152.5 ft; weak HCI reaction at 150-150.5 ft and 151.5-152.5 ft.                                                            | <b>5</b> (0)                       | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  |                    |  |
| SM SP/SP-                                           |                | SILTY SAND (0/60/40) Light olive brown (2.5Y fine- to very fine-grained, trace medium, well so poorly graded, angular; fine- to medium-grained coarse, moderately sorted/graded below 156 ft; HCI reaction at 156-157 ft.  SAND (10/85/5) to SAND WITH SILT (5/85/10) to medium-grained, predominantly fine, trace co                                                                                                                                      | rted /<br>, trace<br>weak<br>Fine- | KXXXXXXX                                |                    |  |
| - SM                                                |                | moderately sorted/graded, otherwise same as a increased silt fraction at 161.5-163 ft and 164.5-increased gravel fraction at 157.5-158 ft and 16 gravel to 1½" length; possible schist clasts at 15                                                                                                                                                                                                                                                        | bove;<br>165 ft;<br>1 ft,          |                                         |                    |  |


| MONITORING                                                      | i WEL          | L ORMWP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROJ   | ECT: MWA-OEST                           | Έ                  |  |
|-----------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|--------------------|--|
| DATES DRILLED :12/20                                            | 0/2021-1/0     | 3/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJ   | PROJECT NUMBER: 1311.01                 |                    |  |
| DRILLING COMPANY:                                               | ABC Liovi      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCAT  | ΓΙΟΝ: Oeste Area                        | -Cayucos St.       |  |
| LOGGED BY: G. Cranha                                            | am PG# 58      | 10.0"-8.0" at 100',<br>897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Legend:                                 | Madarata           |  |
| REVIEWED BY: <i>S. Praz</i>                                     | zen PG# 9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | /ery Weak                               | Moderate<br>Strong |  |
| SAMPLING METHOD: (                                              |                | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | Veak 🛊                                  | Lab Grab<br>Sample |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE USCS             | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | WELL CONSTR<br>DIAGRA                   |                    |  |
| 160                                                             |                | and 164.5 ft; weak HCl reaction at 161.5-163 ft 164.5-165 ft; strong HCl reaction associated wit (1"-2" thick) caliche layer at 166.5 ft.  SANDY SILT (0/45/55) Grayish brown (2.5Y 5/2)                                                                                                                                                                                                                                                                                                                                                                       | h thin | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| ML SM                                                           |                | nonplastic; sand fine- to very fine-grained, mica  SILTY SAND (0/80/20) Yellowish brown (10YR fine- to very fine-grained, well sorted / poorly grained.                                                                                                                                                                                                                                                                                                                                                                                                        | 5/4),  |                                         |                    |  |
| 170 —  -  -  -  -  175 —  -  -  -  -  -  -  -  -  -  -  -  -  - |                | angular; lower contact gradational.  SAND (10/85/5) to SAND WITH SILT (5/85/10)  Brown (10YR 5/3) to grayish brown (2.5Y 5/2), otherwise same as 157-166.5 ft; locally fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel to 2" length, increased gravel fraction at 170-173 ft, 178-180 ft, 183.5-185 ft and 186-187 ft, gravel predominantly granitic and gneiss; interbed of silty sand (0/80/20), ~3" thick, between 180.5 and 181 ft, fine-grained; weak H reaction at 183-183.5 ft and 185.5 ft. | 7      | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| SP/<br>SP-<br>SM                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | XXXXXX                                  |                    |  |

| MOI                     | IONITORING WELL ORMWP |                         |                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | PROJECT: MWA-OESTE                      |  |  |
|-------------------------|-----------------------|-------------------------|------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|--|--|
| DATES                   | DRIL                  | LED                     | :12/20                 | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROJECT NUMBER: 1311.01         |                                         |  |  |
| DRILLI                  | NG C                  | OMPA                    | ANY: A                 | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCATION: Oeste Area-Cayucos St |                                         |  |  |
| LOGGI                   | ED BY                 | ∕: G. C                 | Cranha                 | am PG# !       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | Legend: No Reaction Moderate            |  |  |
| REVIE                   | WED                   | BY: <i>S</i>            | . Praz                 | en PG#         | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | Very Weak Strong                        |  |  |
| SAMPL                   |                       |                         | OD: (                  | Continous      | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | Weak Lab Grab Sample WELL CONSTRUCTION  |  |  |
| DEPTH<br>(feet)         | HCI<br>Reaction       | RECOVERY/<br>LAB SAMPLE | SOSN                   | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | DIAGRAM                                 |  |  |
| 180<br>—<br>—<br>185 —— |                       |                         |                        |                | SAND (10/85/5) to SAND WITH SILT (5/85/10) Brown (10YR 5/3) to grayish brown (2.5Y 5/2), otherwise same as 157-166.5 ft; locally fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel to 2" length, increased gravel fraction at 170-173 ft, 178-180 ft, 183.5-185 ft and 186-187 ft, gravel predominantly granitic and gneiss; interbed of silty sand (0/80/20), ~3" thick, between 180.5 and 181 ft, fine-grained; weak HCI reaction at 183-183.5 ft and 185.5 ft. |                                 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |  |
|                         |                       |                         | SM<br>SP/<br>SP-<br>SM |                | SILTY SAND (0/80/20) Brown (10YR 5/3), fine-medium-grained, predominantly fine, trace coar moderately sorted/graded, angular to subangula SAND (10/85/5) to SAND WITH SILT (5/85/10) as 169-188 ft.                                                                                                                                                                                                                                                                                                                        | se,<br>ar.                      | KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  |  |  |
|                         |                       |                         | SM<br>SW-<br>SM        |                | SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), to coarse-grained, poorly sorted / well graded, a to subangular; weak HCl reaction; lower contact gradational; probably highly disturbed due to diffrecovering core interval.  SAND WITH SILT (5/85/10) Dark grayish brown (2.5Y 4/2), otherwise same as above; trace fine gravel; very weak HCl reaction; probably highly disturbed due to difficulty recovering core interv                                                                                                 | ingular<br>t<br>ficulty<br>n    | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |  |  |
| -<br>-                  |                       |                         | SW                     |                | SAND (5/90/5) Brown (10YR 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, and subangular; trace silt; trace fine gravel to 1" leng SILTY SAND (0/85/15) Yellowish brown (10YR fine- to medium-grained, predominantly fine, moderately sorted/graded, angular to subangula weak HCI reaction at 198.5-199.5 ft.                                                                                                                                                                                            | gth.<br>5/4),                   | **************************************  |  |  |
| 200                     |                       |                         |                        | · · · · · · ·  | SAND (5/90/5) to SAND WITH SILT (5/85/10) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ine- to                         |                                         |  |  |

| MON               |                 | DRI                     | NG               | WE             | LL ORMWP                                                                                                                                                                                                                                                                                                                                            | PROJ                       | IECT: MWA-OES                           | TE                                      |  |
|-------------------|-----------------|-------------------------|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|--|
| DATES             | DRIL            | LED :                   | 12/20            | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                    | PROJECT NUMBER: 1311.01    |                                         |                                         |  |
| DRILLIN           | NG CC           | OMPA                    | ANY: A           | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                     | LOCA                       | TION: Oeste Area                        | a-Cayucos St.                           |  |
| LOGGE             | D BY            | : G. C                  | ranha            | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                   |                            | Legend:                                 | Moderate                                |  |
| REVIEV            | VED E           | 3Y: <i>S.</i>           | Praz             | en PG#         |                                                                                                                                                                                                                                                                                                                                                     |                            | Very Weak                               | Strong                                  |  |
| SAMPL             |                 |                         | OD: (            | Continou       | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                 | \                          | Weak                                    | Lab Grab<br>Sample                      |  |
| DEPTH<br>(feet)   | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS             | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                               |                            | WELL CONST<br>DIAGRA                    |                                         |  |
| 200 — — — 205 — — |                 |                         | SP/<br>SP-<br>SM |                | medium-grained, predominantly fine, moderately sorted/graded, locally fine- to coarse-grained, posorted / well graded, otherwise same as 169-19, trace fine gravel, locally to 3" length.                                                                                                                                                           | oorly<br>2 ft;             | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | KKKKKKKKKKKK                            |  |
|                   |                 |                         | SW               |                | SAND WITH SILT AND GRAVEL (40/50/10) Fill coarse-grained, poorly sorted / well graded, other                                                                                                                                                                                                                                                        |                            |                                         | X                                       |  |
| 210               |                 |                         | SW/<br>SP-<br>SM |                | same as above; gravel to 2" length.  SAND (10/85/5) Fine- to coarse-grained, poorly sorted / well graded, to SAND WITH SILT (5/85/6) fine- to medium-grained, predominantly fine, tracoarse, moderately sorted/graded, otherwise sa 169-188 ft; increased silt fraction at 210-212.5 ft weak HCI reaction at 210 ft, 211-212.5 ft and 214.5-215 ft. | /10),<br>ce<br>me as<br>;; | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |  |
| -                 |                 |                         | SP<br>SM         |                | SAND (0/100/T) Fine-grained, well sorted / poograded, angular.                                                                                                                                                                                                                                                                                      | •                          |                                         | (XX)                                    |  |
|                   |                 |                         | JIVI             |                | SILTY SAND (0/80/20) Fine- to coarse-grained poorly sorted / well graded, angular to subangul                                                                                                                                                                                                                                                       |                            |                                         | XX                                      |  |
| _                 |                 |                         | SW               |                | SAND WITH SILT (5/85/10) Fine- to medium-graded predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace fine                                                                                                                                                                                                       |                            |                                         | XXXXX                                   |  |
| 220               |                 |                         |                  |                | gravel; increased coarse sand and gravel fraction                                                                                                                                                                                                                                                                                                   | лı al                      |                                         | 60                                      |  |

| MONITORING WELL ORMWP PRO.                     |                               |                                                                                                                                                                                                                                                                                                          |              | DJECT: MWA-OESTE<br>DJECT NUMBER: 1311.01<br>ATION: <i>Oeste Area-Cayucos St.</i> |  |
|------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------|--|
| DATES DRILLED :12                              |                               |                                                                                                                                                                                                                                                                                                          |              |                                                                                   |  |
| DRILLING COMPAN                                |                               |                                                                                                                                                                                                                                                                                                          |              |                                                                                   |  |
| LOGGED BY: G. Cra                              | Legend:  No Reaction Moderate |                                                                                                                                                                                                                                                                                                          |              |                                                                                   |  |
| REVIEWED BY: S. F                              | Prazen PG#                    | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                         |              | ery Weak Strong                                                                   |  |
| SAMPLING METHO                                 | D: Continous                  | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                      | V            | Veak Lab Grab Sample                                                              |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE | USCS<br>GRAPHIC<br>LOG        | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                    |              | WELL CONSTRUCTION<br>DIAGRAM                                                      |  |
| 220                                            | SW-                           | 219-220 ft.  SAND WITH SILT AND GRAVEL (20/70/10)  Otherwise same as above; gravel to 2½" length:                                                                                                                                                                                                        | ; weak       | XXXX                                                                              |  |
| 225 —                                          | SW                            | HCI reaction at 221 ft.  SAND (5/90/5) Yellowish brown (10YR 5/4), fincoarse-grained, poorly sorted / well graded, ang subangular; trace silt; trace fine gravel, locally to length.                                                                                                                     | ular to      | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                           |  |
|                                                |                               | No recovery.                                                                                                                                                                                                                                                                                             |              | XXXXXXXXXX                                                                        |  |
|                                                | SW-                           | SAND WITH SILT (10/80/10) Olive brown (2.5Y fine- to coarse-grained, poorly sorted / well grad angular to subangular; trace gravel to 2" length; HCI reaction at 230-234 ft; probably highly distudue to difficulty recovering core interval.                                                            | led,<br>weak | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK                                           |  |
| 235 —                                          | SM                            | SILTY SAND (10/70/20) Otherwise same as ab gravel fine; thin (~1" thick) interbed of dark gray silt at 235 ft; probably highly disturbed due to dif                                                                                                                                                      | sandy        |                                                                                   |  |
|                                                | SP                            | recovering core interval.  SAND (5/90/5) Olive brown (2.5Y 4/4), fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; fine gravel; lower contact gradational over interv 237-237.5 ft; probably highly disturbed due to direcovering core interval. | trace<br>/al | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                           |  |
|                                                | SP/<br>SP-<br>SM              | SAND (0/95/5) to SAND WITH SILT (0/90/10) Yellowish brown (10YR 5/4 to 5/6), fine- to very fine-grained, trace medium to coarse, well sorte poorly graded, angular to subangular; locally tra                                                                                                            | d /          | XXXXX                                                                             |  |

| MONITORING                                          | PROJECT: MWA-OESTE                                                                                                                                                                                                                                                                      |                                        |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| DATES DRILLED :12/20                                | PROJECT NUMBER: 1311.01                                                                                                                                                                                                                                                                 |                                        |  |
| DRILLING COMPANY:                                   | LOCATION: Oeste Area-Cayucos St.                                                                                                                                                                                                                                                        |                                        |  |
| LOGGED BY: G. Cranha                                | Legend:                                                                                                                                                                                                                                                                                 |                                        |  |
| REVIEWED BY: <i>S. Praz</i>                         | 6.0"-4.0" at 375' ten PG# 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                              | No Reaction Moderate  Very Weak Strong |  |
| SAMPLING METHOD: (                                  | Continous TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                           | Weak Lab Grab                          |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE USCS | LITHOLOGIC DESCRIPTION OF MATERIAL                                                                                                                                                                                                                                                      | WELL CONSTRUCTION<br>DIAGRAM           |  |
| 240 SP/SP-SM                                        | micaceous; with interbed(s) of silty sand (0/70/otherwise same, at 238.5-239.5 ft.                                                                                                                                                                                                      | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |
| GP                                                  | GRAVEL WITH SAND (60/35/5) Gravel to 2" lower with cobbles to 3½" - 4", subangular, granitic; s                                                                                                                                                                                         |                                        |  |
| 245 — SW                                            | fine- to very fine-grained, trace medium to coal trace silt.  SAND (0/95/5) Yellowish brown (10YR 5/4), fi coarse-grained, poorly sorted / well graded, an subangular; trace silt; trace fine gravel to 1" ler below 246 ft; probably highly disturbed due to recovering core interval. | rse; ne- to ngular to ngth             |  |
| 250 — SM                                            | SILTY SAND (0/80/20) Yellowish brown (10YI 5/4), fine- to medium-grained, trace coarse, moderately sorted/graded, angular to subangu lower contact gradational.                                                                                                                         |                                        |  |
| 255 — SW                                            | SAND (0/95/5 to 5/90/5) Otherwise same as 244-249.5 ft; locally trace gravel, increased grafraction to 10% and color change to dark grayis brown (2.5Y 4/2) below 256 ft; possible schist (256.5 ft.                                                                                    | sh clast at                            |  |
| SP-<br>SM<br>260                                    | SAND WITH SILT (0/90/10) Yellowish brown (5/6), fine- to medium-grained, predominantly fi trace coarse, moderately sorted/graded, angul subangular; trace fine gravel below 262 ft; wear reaction at 258-259 ft.                                                                        | ne,<br>ar to                           |  |



| MOI                                                                                                                | VIT             | OR                      | ING       | WE             | LL ORMWP                                                                                                                                                                                           |                         | ECT: MWA-OESTE                |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|--|--|
| DATES DRILLED :12/20/2021-1/03/2022 DATE COMPLETED: 1/5/2022                                                       |                 |                         |           |                |                                                                                                                                                                                                    | PROJECT NUMBER: 1311.01 |                               |  |  |
|                                                                                                                    |                 |                         |           |                |                                                                                                                                                                                                    |                         | ATION: Oeste Area-Cayucos St. |  |  |
| 10.0"-8.0" at 100',<br>LOGGED BY: <i>G. Cranham PG# 5897</i> BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375' |                 |                         |           |                |                                                                                                                                                                                                    |                         | Legend: No Reaction Moderate  |  |  |
| REVIEWED BY: <i>S. Prazen PG# 9</i>                                                                                |                 |                         |           | en PG#         |                                                                                                                                                                                                    |                         | /ery Weak Strong              |  |  |
| SAMPI                                                                                                              | ING I           |                         | IOD: (    | Continou       | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                | V                       | Veak Lab Grab Sample          |  |  |
| DEPTH<br>(feet)                                                                                                    | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                              |                         | WELL CONSTRUCTION DIAGRAM     |  |  |
| 280<br>—                                                                                                           |                 |                         | SP        |                | SAND (T/95/5) Light olive brown (2.5Y 5/3), fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; trace silt; trac fine gravel; weak HCI reaction at 280.5 ft. |                         |                               |  |  |
| _<br>_<br>_<br>285                                                                                                 |                 |                         | SP-<br>SM |                | SAND WITH SILT (0/90/10) Same as 264.5-26 weak HCl reaction at 285 ft; lower contact grada                                                                                                         |                         |                               |  |  |
| -<br>-<br>-                                                                                                        |                 |                         | SP        |                | SAND (T/95/5 to 5/90/5) Same as 277.5-281.5 trace fine gravel to ¾" length; lower contact gradational.                                                                                             | ft;                     |                               |  |  |
| 290 —<br>—<br>—<br>—                                                                                               |                 | *                       | ML        |                | SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), plasticity; sand very fine- to medium-grained, predominantly fine, trace coarse; weak HCl reac 290-291 ft and 291.5-295 ft; lower contact grada       | tion at                 | 291-                          |  |  |
| 295 —<br>—                                                                                                         |                 |                         | SP/<br>ML |                | SAND (5/90/5) Same as 285-290 ft, interbedded SANDY SILT (0/40/60), same as above; weak H reaction at 295-296.5 ft.                                                                                |                         |                               |  |  |
|                                                                                                                    |                 |                         | ML        |                | SANDY SILT (0/30/70) Nonplastic, otherwise same as 290-295 ft; weak HCl reaction at 298-301 ft and 302.5-305 ft.                                                                                   |                         |                               |  |  |
| 300                                                                                                                |                 |                         |           |                |                                                                                                                                                                                                    |                         |                               |  |  |

| MONI<br>DATES D        |                                     |                  |               | PROJECT: MWA-OESTE<br>PROJECT NUMBER: 1311.01                                                                                                                                                                                                                              |                    |                                |  |
|------------------------|-------------------------------------|------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|--|
| DRILLING               |                                     |                  |               | in DRILLING METHOD: Sonic                                                                                                                                                                                                                                                  | LOCA               | ATION: Oeste Area-Cayucos St.  |  |
| LOGGED                 | BY: <i>G. C</i>                     | Cranha           | am PG# 5      | 10.0"-8.0" at 100',<br>897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                           |                    | Legend:  No Reaction Moderate  |  |
| REVIEWE                |                                     |                  |               | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                           |                    | Very Weak Strong               |  |
| SAMPLIN                |                                     |                  | Continous     | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                        |                    | Weak Sample  WELL CONSTRUCTION |  |
| DEPTH<br>(feet)<br>HCI | Reaction<br>RECOVERY/<br>LAB SAMPLE | USCS             | GRAPHI<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                      |                    | DIAGRAM                        |  |
| 300                    |                                     | ML               |               | SANDY SILT (0/30/70) Nonplastic, otherwise same as 290-295 ft; weak HCl reaction at 298-301 ft and 302.5-305 ft.                                                                                                                                                           |                    |                                |  |
| 305 —                  |                                     | SP               |               | SAND (5/90/5) Same as 285-290 ft, gravel to 1 length; thin (~1") carbonate-cemented layer at 3 weak HCl reaction at 308-309 ft.                                                                                                                                            |                    |                                |  |
| 310 —                  |                                     | SP-<br>SM/<br>SM |               | SAND WITH SILT (0/90/10) to SILTY SAND (0/Olive brown (2.5Y 4/3), fine- to very fine-grained trace medium, locally trace coarse, well sorted / graded, angular to subangular; silt fraction varie weak HCl reaction at 309.5-314.5 ft; very weak reaction at 315.5-316 ft. | d,<br>poorly<br>s; |                                |  |
|                        |                                     | SP               |               | SAND (0/95/5) Fine-grained to fine- to medium-grained, predominantly fine, trace coar well sorted / poorly graded to moderately sorted/graded, angular to subangular; trace silt; HCI reaction at 317 ft.                                                                  |                    |                                |  |
| 320                    |                                     | SP-<br>SM        |               | SAND WITH SILT (0/90/10) Light olive brown (5/3), fine- to very fine-grained, trace medium, w sorted / poorly graded, angular; micaceous; carbonate-cemented layer, several inches thick,                                                                                  | ell                |                                |  |

| MOI                                       | VIT             | OR                      | ING       | WE             | LL ORMWP                                                                                                                                                                                                                                                                                                        | PROJ                    | ECT: MWA-OEST         | E                  |
|-------------------------------------------|-----------------|-------------------------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|--------------------|
| DATES                                     | DRIL            | LED                     | :12/20    | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                | PROJECT NUMBER: 1311.01 |                       |                    |
| DRILLI                                    | NG C            | OMPA                    | ANY: A    | ABC Lio        |                                                                                                                                                                                                                                                                                                                 | LOCA                    | ΓΙΟΝ: Oeste Area      | -Cayucos St.       |
| LOGG                                      | ED BY           | /: <i>G.</i> C          | Cranha    | am PG#         | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                               |                         | Legend:               |                    |
| REVIE'                                    | WED             | BY: <i>S</i>            | . Praz    | en PG#         |                                                                                                                                                                                                                                                                                                                 |                         | lo Reaction /ery Weak | Moderate<br>Strong |
| SAMPI                                     | _ING I          |                         | IOD: (    | Continou       | S TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                           | V                       | Veak 🛊                | Lab Grab<br>Sample |
| DEPTH<br>(feet)                           | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                           |                         | WELL CONSTR<br>DIAGRA |                    |
| 320 — — — — — — — — — — — — — — — — — — — |                 |                         | SP-<br>SM | )              | 327 ft; weak HCl reaction at 318.5-320 ft, HCl re at 322.5-324 ft, weak HCl reaction at 324.5-328 lower contact gradational over interval 328.5-32                                                                                                                                                              | ft;                     |                       |                    |
| 330 —<br>-<br>-                           |                 |                         | SP        |                | SAND (0/95/5) Light olive brown (2.5Y 5/3), fine-grained, well sorted / poorly graded, angula trace silt; micaceous.  SANDY SILT (0/30/70) Light yellowish brown (2 6/3), low plasticity; sand fine- to very fine-graine weak HCl reaction at 331-333 ft; lower contact gradational over interval 332.5-333 ft. | 2.5Y                    |                       |                    |
| _                                         |                 |                         | SP        |                | SAND (0/95/5) Same as 329-330 ft; coarsens downward.                                                                                                                                                                                                                                                            |                         |                       |                    |
| 335 —                                     |                 |                         | SW        |                | SAND (5/90/5) Yellowish brown (10YR 5/4), fin-<br>coarse-grained, poorly sorted / well graded, ang<br>subangular; trace silt; trace fine gravel.                                                                                                                                                                |                         |                       |                    |
|                                           |                 |                         | ML        |                | SANDY SILT (0/30/70) Same as 330-332.5 ft; v few very fine carbonate streaks in intact fragmen                                                                                                                                                                                                                  |                         |                       |                    |
| _                                         |                 |                         | SP-<br>SM |                | weak HCl reaction.  SAND WITH SILT (0/90/10) Pale brown (10YR otherwise same as 317.5-328.5 ft; lower contact                                                                                                                                                                                                   | 6/3),                   |                       |                    |
| _                                         |                 |                         | SM        |                | gradational.  SILTY SAND (0/70/30) Otherwise same as about HCl reaction at 338-338.5 ft.                                                                                                                                                                                                                        |                         |                       |                    |
| _<br>340                                  |                 | *                       | ML        |                | SANDY SILT (0/40/60) Yellowish brown (10YR stiff, low to medium plasticity; sand fine- to medium-grained; trace clay; with few carbonate                                                                                                                                                                        | -                       |                       |                    |
|                                           |                 |                         |           |                |                                                                                                                                                                                                                                                                                                                 |                         |                       |                    |

| IOM             | VIT(            | OR                      | ING       | WEI                | PROJECT: MWA-OESTE                                                                                                                                                                                    |                         |                              |  |  |
|-----------------|-----------------|-------------------------|-----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--|--|
| DATES           | DRIL            | LED                     | :12/20    | )/2021-1/          | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                      | PROJECT NUMBER: 1311.01 |                              |  |  |
| DRILLI          | NG C            | OMPA                    | ANY: A    | ABC Lio            |                                                                                                                                                                                                       | LOCA                    | ΓΙΟΝ: Oeste Area-Cayucos St. |  |  |
| LOGGI           | ED BY           | ': G. C                 | Cranha    | am PG# !           | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                     |                         | Legend: No Reaction Moderate |  |  |
| REVIE           | WED             | BY: <i>S</i>            | . Praz    | en PG#             | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                      | \                       | /ery Weak Strong             |  |  |
| SAMPL           | ING I           |                         | IOD: (    | Continous          | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                   | V                       | Veak Lab Grab Sample         |  |  |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG     | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                 |                         | WELL CONSTRUCTION DIAGRAM    |  |  |
| 340<br>_<br>_   |                 |                         | ML        |                    | streaks in intact fragments; decreased silt fraction below 341 ft; HCl reaction at 338.5-341 ft, weak reaction at 342.5-343 ft.                                                                       |                         |                              |  |  |
| 345 —           |                 |                         | SP-<br>SM |                    | SAND WITH SILT (5/85/10) Same as 317.5-32 trace fine gravel to 1" length; weak HCl reaction                                                                                                           |                         |                              |  |  |
| _               |                 |                         |           |                    | No recovery.                                                                                                                                                                                          |                         |                              |  |  |
| 350 —<br>—      |                 |                         | ML        |                    | Probable SANDY SILT (0/30/70) Same as 338.5-343 ft; weak HCl reaction at 351-353 ft; highly disturbed due to difficulty recovering core interval.                                                     |                         |                              |  |  |
|                 |                 |                         | SM        |                    | SILTY SAND (0/80/20) Light olive brown (2.5Y fine- to very fine-grained, trace medium, well so poorly graded, angular; weak HCl reaction; high disturbed due to difficulty recovering core intervals. | rted /<br>ıly           |                              |  |  |
| _               |                 |                         | SP        |                    | SAND (0/95/5) Olive brown (2.5Y 4/3), fine- to medium-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; disturbed due to difficulty recovering core interv    | highly                  |                              |  |  |
| 360             |                 |                         |           | ··· <del>···</del> |                                                                                                                                                                                                       |                         |                              |  |  |

| MOI             | AI I            | OR                      | ING       | WE             | LL ORMWP                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROJECT: MWA-OESTE        |                     |                    |  |
|-----------------|-----------------|-------------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|--------------------|--|
| DATES           | S DRIL          | LED                     | :12/20    | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                            | PROJECT NUMBER: 1311.01   |                     |                    |  |
| DRILLI          | NG C            | OMPA                    | λNY: Α    | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCA                      | ATION: Oeste Are    | a-Cayucos St.      |  |
| LOGGI           | ED BY           | /: <i>G.</i> C          | Cranha    | am PG#         | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                           |                           | Legend:             | Moderate           |  |
| REVIE'          | WED             | BY: <i>S</i>            | . Praz    | en PG#         | 9816 GROUND SURFACE ELEV: 3466.5                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Very Weak           | Strong             |  |
| SAMPI           | _ING I          |                         | IOD: (    | Continou       | s TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Weak                | Lab Grab<br>Sample |  |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | nscs      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                       |                           | WELL CONST<br>DIAGR |                    |  |
| 360             |                 |                         | ML        |                | SILT WITH SAND (0/20/80) Olive brown (2.5Y low plasticity; sand fine-grained, with coarser sa                                                                                                                                                                                                                                                                                                                                               |                           |                     | X                  |  |
| -               |                 |                         | SP-<br>SM |                | grains actually carbonate-cemented fragments; reaction; lower contact gradational; highly disturdue to difficulty recovering core interval.  SAND WITH SILT (0/90/10) Light olive brown (5/3), fine- to very fine-grained, trace medium, we sorted / poorly graded, angular to subangular; micaceous; reduced very fine sand fraction at 363-364 ft; HCI reaction at 361-361.5 ft, weak H reaction at 362-363 ft and 364-364.5 ft, strong H | HCI<br>bed<br>2.5Y<br>ell |                     | KKKKKKKKKK         |  |
| 365 —<br>—      |                 |                         | SM        |                | reaction at 364.5 ft.  SILTY SAND (0/60/40) Yellowish brown (10YR fine- to medium-grained, predominantly fine, moderately sorted/graded, angular to subangula                                                                                                                                                                                                                                                                               | ar;                       |                     | XXXX               |  |
| _               |                 |                         | SP-<br>SM |                | trace clay; lower contact gradational over interval 365.5-366 ft.  SAND WITH SILT (0/90/10) Same as 361-363 weak HCl reaction at 367.5-368.5 ft.                                                                                                                                                                                                                                                                                            |                           |                     | KXXXXX             |  |
| _               |                 |                         | ML        |                | SILT (0/10/90) Light yellowish brown (2.5Y 6/3) nonplastic; trace fine sand; weak HCl reaction a 368.5-369 ft, HCl reaction at 369-369.5 ft.                                                                                                                                                                                                                                                                                                |                           |                     | XXX                |  |
| 370 —<br>—<br>— |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Grayish brown (2.5 5/2), fine- to coarse-grained, predominantly fine moderately sorted/graded, angular to subangula trace fine gravel; HCl reaction at 369.5-373.5 ft, carbonate streaks and possible thin caliche layer                                                                                                                                                                                           | ,<br>ar;<br>with          |                     | KKKKKKKKK          |  |
| _               |                 |                         | ML        |                | SILT WITH SAND (0/20/80) Otherwise same as 368.5-369.5 ft; HCl reaction, with carbonate stre                                                                                                                                                                                                                                                                                                                                                |                           |                     | 8                  |  |
| 375 —<br>—      |                 |                         | SP-<br>SM |                | and possible thin caliche layer(s).  SAND WITH SILT (10/80/10) Otherwise same a 369.5-373.5 ft; interbed of clay to sandy clay, ~2 thick, hard, at 375.5 ft; weak HCl reaction at 375.5-376 ft.                                                                                                                                                                                                                                             | as                        |                     |                    |  |
| _<br>_          |                 |                         | SM        |                | Probable SILTY SAND Otherwise same as aboweak HCl reaction; probably highly disturbed dudifficulty recovering core interval.  SILTY SAND (0/75/25) Yellowish brown (10YR)                                                                                                                                                                                                                                                                   | ie to                     |                     |                    |  |
| _<br>380        |                 |                         | SP-<br>SM |                | fine-grained, trace medium, well sorted / poorly graded, angular to subangular; locally very dens based on intact fragments; lower contact gradat                                                                                                                                                                                                                                                                                           | se                        |                     |                    |  |

| MOI                           | VIT             | ORI                     | ING              | WE             | PROJECT: MWA-OESTE                                                                                                                                                                                                                                                                                                                                                                            |                                   |                       |                    |  |
|-------------------------------|-----------------|-------------------------|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|--------------------|--|
| DATES                         | DRIL            | LED                     | :12/20           | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                              | PROJECT NUMBER: 1311.01           |                       |                    |  |
| DRILLI                        | NG C            | OMPA                    | ANY: A           | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                               | LOCA                              | TION: Oeste Area      | -Cayucos St.       |  |
| LOGGI                         | ED BY           | ': G. C                 | Cranha           | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                             |                                   | Legend:               | Moderate           |  |
| REVIE                         | WED             | BY: <i>S</i>            | . Praz           | en PG#         |                                                                                                                                                                                                                                                                                                                                                                                               |                                   | /ery Weak             | Strong             |  |
| SAMPL                         |                 |                         | OD: (            | Continous      | TOTAL DEPTH OF BORING: 400 feet bgs                                                                                                                                                                                                                                                                                                                                                           | V                                 | Weak 🛊                | Lab Grab<br>Sample |  |
| DEPTH<br>(feet)               | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS             | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                         |                                   | WELL CONSTR<br>DIAGRA |                    |  |
| 380 —<br>—<br>—<br>—<br>385 — |                 | R I                     | SP-<br>SM        | )              | probably highly disturbed due to difficulty recover core interval.  SAND WITH SILT (0/90/10) Brown (10YR 5/3), otherwise same as above; locally higher silt consilty sand (0/80/20); locally fine- to very fine-grawith thin local interbeds of silt with sand (0/20/80 strong HCI reaction at 381-386 ft; 379-381 ft interprobably highly disturbed due to difficulty recover core interval. | itent to<br>ined;<br>0);<br>erval |                       |                    |  |
| _                             |                 |                         | ML               |                | SILT (0/5/95) Light olive brown (2.5Y 5/3), nong to low plasticity; trace fine to coarse sand, some carbonate-cemented fragments; strong HCl read SAND WITH SILT (0/90/10) Fine- to very                                                                                                                                                                                                      | e are<br>ction.                   |                       |                    |  |
| 390 —                         |                 |                         | SP-<br>SM        |                | fine-grained, otherwise same as 379-386 ft; weareaction.  SILT WITH SAND (0/20/80) Otherwise same as 386-388 ft; grades downward to SANDY SILT (0/40/60) below 390.5 ft; coarsens downward to fine sand; weak HCI reaction at 389.5-390 ft, str                                                                                                                                               | s<br>very                         |                       |                    |  |
| -                             |                 |                         | SM/<br>SP-<br>SM |                | HCI reaction at 390-390.5 ft, weak HCI reaction 390.5-392.5 ft; lower contact gradational.  SILTY SAND (0/60/40) to SAND WITH SILT (0/Otherwise same as 388-389.5 ft; continues coarsening downward; weak HCI reaction at 392.5-393 ft.                                                                                                                                                       | at                                |                       |                    |  |
| 395 —<br>—                    |                 |                         | SP               |                | SAND (5/90/5) Grayish brown (2.5Y 5/2), fine-medium-grained, trace coarse, moderately sorted/graded, angular to subangular; trace silt; fine gravel; thin caliche layer at base.  SILT (0/10/90) Otherwise same as 386-388 ft;                                                                                                                                                                |                                   |                       |                    |  |
|                               |                 |                         | SP-<br>SM        |                | laminated; HCI reaction.  SAND WITH SILT (5/85/10) Trace fine gravel, otherwise same as 388-389.5 ft; gravel locally c to 3" length at 397.5 ft and 399 ft, with marble cl 399 ft; locally carbonate-cemented with caliche layer(s) at 397.5 ft and 399 ft; strong HCI reaction 399 ft, weak HCI reaction at 399-400 ft.                                                                      | last at                           |                       |                    |  |

# APPENDIX C SOIL LEACHATE SAMPLE LABORATORY REPORTS



# Pace Analytical® ANALYTICAL REPORT

February 04, 2022

# Hargis and Associates

Sample Delivery Group: L1449323

Samples Received: 01/04/2022

Project Number: 1311..01

Description: MWA-OETZ

Report To: Greg Cranham

1640 South Stapely Dr., Ste 209

Mesa, AZ 85204

Entire Report Reviewed By: Washne R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

















# TABLE OF CONTENTS

| Cp: Cover Page                        |    |  |  |  |  |  |
|---------------------------------------|----|--|--|--|--|--|
| Tc: Table of Contents                 | 2  |  |  |  |  |  |
| Ss: Sample Summary                    | 3  |  |  |  |  |  |
| Cn: Case Narrative                    | 4  |  |  |  |  |  |
| Ds: Detection Summary                 | 5  |  |  |  |  |  |
| Sr: Sample Results                    | 6  |  |  |  |  |  |
| MW-1-120 L1449323-01                  | 6  |  |  |  |  |  |
| MW-1-291 L1449323-02                  | 8  |  |  |  |  |  |
| MW-1-340 L1449323-03                  | 10 |  |  |  |  |  |
| Qc: Quality Control Summary           | 12 |  |  |  |  |  |
| Wet Chemistry by Method 4500CN E-2016 | 12 |  |  |  |  |  |
| Wet Chemistry by Method 4500P E-2011  | 13 |  |  |  |  |  |
| Wet Chemistry by Method 7196A         | 14 |  |  |  |  |  |
| Wet Chemistry by Method 9056A         | 15 |  |  |  |  |  |
| Mercury by Method 7470A               | 16 |  |  |  |  |  |
| Metals (ICP) by Method 6010D          | 17 |  |  |  |  |  |
| Metals (ICPMS) by Method 6020B        | 19 |  |  |  |  |  |
| GI: Glossary of Terms                 | 21 |  |  |  |  |  |
| Al: Accreditations & Locations        |    |  |  |  |  |  |
| Sc: Sample Chain of Custody           |    |  |  |  |  |  |





















# SAMPLE SUMMARY

|                                       | SAMPLE    | SUIVIIV  | MAKI                  |                       |               |                |
|---------------------------------------|-----------|----------|-----------------------|-----------------------|---------------|----------------|
|                                       |           |          | Collected by          | Collected date/time   |               |                |
| MW-1-120 L1449323-01 GW               |           |          | Greg Cranham          | 12/23/21 13:30        | 01/04/22 14:3 | 30             |
| Method                                | Batch     | Dilution | Preparation date/time | Analysis<br>date/time | Analyst       | Location       |
| Preparation by Method 1312            | WG1800166 | 1        | 01/11/22 11:00        | 01/11/22 11:00        | CJW           | Mt. Juliet, TN |
| Wet Chemistry by Method 4500CN E-2016 | WG1802922 | 1        | 01/15/22 17:58        | 01/18/22 18:34        | JER           | Mt. Juliet, Ti |
| Wet Chemistry by Method 4500CN G-2016 | WG1802922 | 1        | 01/18/22 18:34        | 01/18/22 18:34        | JER           | Mt. Juliet, TN |
| Wet Chemistry by Method 4500P E-2011  | WG1802353 | 1        | 01/14/22 22:01        | 01/14/22 22:01        | ARM           | Mt. Juliet, Ti |
| Wet Chemistry by Method 7196A         | WG1802664 | 1        | 01/14/22 23:24        | 01/14/22 23:24        | ARM           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A         | WG1802834 | 10       | 01/14/22 11:15        | 01/14/22 11:15        | LBR           | Mt. Juliet, Ti |
| Mercury by Method 7470A               | WG1802268 | 1        | 01/17/22 09:12        | 01/17/22 14:40        | ABL           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D          | WG1801498 | 1        | 01/18/22 13:46        | 01/23/22 16:27        | CCE           | Mt. Juliet, TN |
| Metals (ICPMS) by Method 6020B        | WG1808081 | 1        | 01/28/22 10:17        | 01/28/22 14:55        | JDG           | Mt. Juliet, TN |
| Metals (ICPMS) by Method 6020B        | WG1808081 | 1        | 01/28/22 10:17        | 02/04/22 14:54        | JPD           | Mt. Juliet, TN |
|                                       |           |          | Collected by          | Collected date/time   | Received da   | te/time        |
| MW-1-291 L1449323-02 GW               |           |          | Greg Cranham          | 12/28/21 16:00        | 01/04/22 14:3 | 30             |
| Method                                | Batch     | Dilution | Preparation date/time | Analysis<br>date/time | Analyst       | Location       |
| Preparation by Method 1312            | WG1800166 | 1        | 01/11/22 11:00        | 01/11/22 11:00        | CJW           | Mt. Juliet, TI |
| Net Chemistry by Method 4500CN E-2016 | WG1802922 | 1        | 01/15/22 17:58        | 01/18/22 18:35        | JER           | Mt. Juliet, Ti |
| Net Chemistry by Method 4500CN G-2016 | WG1802922 | 1        | 01/18/22 18:35        | 01/18/22 18:35        | JER           | Mt. Juliet, TI |
| Wet Chemistry by Method 4500P E-2011  | WG1802353 | 1        | 01/14/22 22:01        | 01/14/22 22:01        | ARM           | Mt. Juliet, Ti |
| Wet Chemistry by Method 7196A         | WG1802664 | 1        | 01/14/22 23:25        | 01/14/22 23:25        | ARM           | Mt. Juliet, TN |
| Wet Chemistry by Method 9056A         | WG1802834 | 10       | 01/14/22 11:37        | 01/14/22 11:37        | LBR           | Mt. Juliet, TN |
| Mercury by Method 7470A               | WG1802268 | 1        | 01/17/22 09:12        | 01/17/22 14:47        | ABL           | Mt. Juliet, TN |
| Metals (ICP) by Method 6010D          | WG1801498 | 1        | 01/18/22 13:46        | 01/23/22 16:36        | CCE           | Mt. Juliet, TN |
| Metals (ICPMS) by Method 6020B        | WG1808081 | 1        | 01/28/22 10:17        | 01/28/22 14:59        | JDG           | Mt. Juliet, TN |
| Metals (ICPMS) by Method 6020B        | WG1808081 | 1        | 01/28/22 10:17        | 02/04/22 14:58        | JPD           | Mt. Juliet, Ti |
|                                       |           |          | Collected by          | Collected date/time   | Received da   | te/time        |
| MW-1-340 L1449323-03 GW               |           |          | Greg Cranham          | 12/29/21 12:30        | 01/04/22 14:3 | 30             |
| Method                                | Batch     | Dilution | Preparation data/time | Analysis              | Analyst       | Location       |
| Proparation by Mothod 1212            | WC10001CC | 1        | date/time             | date/time             | C IW          | Mt luliot Th   |
| Preparation by Method 1312            | WG1800166 | 1        | 01/11/22 11:00        | 01/11/22 11:00        | CJW           | Mt. Juliet, TN |
| Wet Chemistry by Method 4500CN E-2016 | WG1802922 | 1        | 01/15/22 17:58        | 01/18/22 18:36        | JER           | Mt. Juliet, TN |
| Net Chemistry by Method 4500CN G-2016 | WG1802922 | 1        | 01/18/22 18:36        | 01/18/22 18:36        | JER           | Mt. Juliet, TN |
| Wet Chemistry by Method 4500P E-2011  | WG1802353 | 1        | 01/14/22 22:01        | 01/14/22 22:01        | ARM           | Mt. Juliet, Th |
| Wet Chemistry by Method 7196A         | WG1802664 | 1        | 01/14/22 23:25        | 01/14/22 23:25        | ARM           | Mt. Juliet, Th |
| Wet Chemistry by Method 9056A         | WG1802834 | 100      | 01/14/22 18:59        | 01/14/22 18:59        | LBR           | Mt. Juliet, Th |
| Mercury by Method 7470A               | WG1802268 | 1        | 01/17/22 09:12        | 01/17/22 14:49        | ABL           | Mt. Juliet, TI |
| Metals (ICP) by Method 6010D          | WG1801498 | 1        | 01/18/22 13:46        | 01/23/22 16:38        | CCE           | Mt. Juliet, TN |























Metals (ICPMS) by Method 6020B

Metals (ICPMS) by Method 6020B

WG1808081

WG1808081

1

1

01/28/22 10:17

01/28/22 10:17

01/28/22 14:42

02/04/22 14:41

JDG

JPD

Mt. Juliet, TN

Mt. Juliet, TN

### CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards

Project Manager

<sup>1</sup>Cp



















# **DETECTION SUMMARY**

### Metals (ICP) by Method 6010D

|           |               |           | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|-----------|---------------|-----------|--------|-----------|------|----------|------------------|-----------|
| Client ID | Lab Sample ID | Analyte   | ug/l   |           | ug/l |          | date / time      |           |
| MW-1-120  | L1449323-01   | Aluminum  | 9250   |           | 200  | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Barium    | 78.2   |           | 5.00 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Calcium   | 5790   |           | 1000 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Chromium  | 13.1   | <u>B1</u> | 10.0 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Iron      | 11900  |           | 100  | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Magnesium | 3980   |           | 1000 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Manganese | 210    |           | 10.0 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Sodium    | 20100  |           | 3000 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-120  | L1449323-01   | Vanadium  | 43.7   | <u>B1</u> | 20.0 | 1        | 01/23/2022 16:27 | WG1801498 |
| MW-1-291  | L1449323-02   | Aluminum  | 7850   |           | 200  | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Barium    | 73.1   |           | 5.00 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Calcium   | 7500   |           | 1000 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Chromium  | 18.5   | <u>B1</u> | 10.0 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Iron      | 12100  |           | 100  | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Magnesium | 5030   |           | 1000 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Manganese | 193    |           | 10.0 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Sodium    | 24100  |           | 3000 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-291  | L1449323-02   | Vanadium  | 33.8   | <u>B1</u> | 20.0 | 1        | 01/23/2022 16:36 | WG1801498 |
| MW-1-340  | L1449323-03   | Aluminum  | 3590   |           | 200  | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Barium    | 39.9   |           | 5.00 | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Calcium   | 10700  |           | 1000 | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Iron      | 3990   |           | 100  | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Magnesium | 2790   |           | 1000 | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Manganese | 82.2   |           | 10.0 | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Sodium    | 58200  |           | 3000 | 1        | 01/23/2022 16:38 | WG1801498 |
| MW-1-340  | L1449323-03   | Vanadium  | 42.2   | <u>B1</u> | 20.0 | 1        | 01/23/2022 16:38 | WG1801498 |

# Metals (ICPMS) by Method 6020B

|           |               |         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|-----------|---------------|---------|--------|-----------|------|----------|------------------|-----------|
| Client ID | Lab Sample ID | Analyte | ug/l   |           | ug/l |          | date / time      |           |
| MW-1-120  | L1449323-01   | Arsenic | 3.81   |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| MW-1-120  | L1449323-01   | Copper  | 16.1   |           | 5.00 | 1        | 02/04/2022 14:54 | WG1808081 |
| MW-1-120  | L1449323-01   | Lead    | 5.62   |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| MW-1-120  | L1449323-01   | Nickel  | 6.98   |           | 2.00 | 1        | 02/04/2022 14:54 | WG1808081 |
| MW-1-291  | L1449323-02   | Arsenic | 2.66   |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081 |
| MW-1-291  | L1449323-02   | Copper  | 23.2   |           | 5.00 | 1        | 02/04/2022 14:58 | WG1808081 |
| MW-1-291  | L1449323-02   | Lead    | 5.67   |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081 |
| MW-1-291  | L1449323-02   | Nickel  | 17.9   |           | 2.00 | 1        | 02/04/2022 14:58 | WG1808081 |
| MW-1-291  | L1449323-02   | Zinc    | 45.8   |           | 25.0 | 1        | 01/28/2022 14:59 | WG1808081 |
| MW-1-340  | L1449323-03   | Arsenic | 2.03   |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081 |
| MW-1-340  | L1449323-03   | Copper  | 6.33   |           | 5.00 | 1        | 02/04/2022 14:41 | WG1808081 |
| MW-1-340  | L1449323-03   | Lead    | 2.23   |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081 |
| MW-1-340  | L1449323-03   | Nickel  | 2.33   |           | 2.00 | 1        | 02/04/2022 14:41 | WG1808081 |























# SAMPLE RESULTS - 01

Collected date/time: 12/23/21 13:30

### Preparation by Method 1312

|                 | Result | Qualifier | Prep                  | <u>Batch</u> |
|-----------------|--------|-----------|-----------------------|--------------|
| Analyte         |        |           | date / time           |              |
| SPLP Extraction | -      |           | 1/11/2022 11:00:45 AM | WG1800166    |



### Wet Chemistry by Method 4500CN E-2016

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:34 | WG1802922 |



Cn

### Wet Chemistry by Method 4500CN G-2016

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte          | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide,amenable | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:34 | WG1802922 |



### Wet Chemistry by Method 4500P E-2011

|                 | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|-----------------|--------|-----------|------|----------|------------------|-----------|
| Analyte         | ug/l   |           | ug/l |          | date / time      |           |
| Phosphate,Ortho | ND     | <u>H3</u> | 30.0 | 1        | 01/14/2022 22:01 | WG1802353 |



Ğl

### Wet Chemistry by Method 7196A

|                      | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte              | ug/l   |           | ug/l |          | date / time      |           |
| Chromium, Hexavalent | ND     | H3 M2     | 10.0 | 1        | 01/14/2022 23:24 | WG1802664 |



# Wet Chemistry by Method 9056A

|                | Result | Qualifier | RDL   | Dilution | Analysis         | <u>Batch</u> |
|----------------|--------|-----------|-------|----------|------------------|--------------|
| Analyte        | ug/l   |           | ug/l  |          | date / time      |              |
| Bromide        | ND     |           | 10000 | 10       | 01/14/2022 11:15 | WG1802834    |
| Chloride       | ND     |           | 10000 | 10       | 01/14/2022 11:15 | WG1802834    |
| Fluoride       | ND     |           | 1500  | 10       | 01/14/2022 11:15 | WG1802834    |
| Nitrate as (N) | ND     | <u>H3</u> | 1000  | 10       | 01/14/2022 11:15 | WG1802834    |
| Nitrite as (N) | ND     | <u>H3</u> | 1000  | 10       | 01/14/2022 11:15 | WG1802834    |
| Sulfate        | ND     |           | 50000 | 10       | 01/14/2022 11:15 | WG1802834    |

# <sup>10</sup>Sc

### Mercury by Method 7470A

|         | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|---------|--------|-----------|-------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l  |          | date / time      |           |
| Mercury | ND     |           | 0.200 | 1        | 01/17/2022 14:40 | WG1802268 |

# Metals (ICP) by Method 6010D

|            | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|------------|--------|-----------|------|----------|------------------|--------------|
| Analyte    | ug/l   |           | ug/l |          | date / time      |              |
| Aluminum   | 9250   |           | 200  | 1        | 01/23/2022 16:27 | WG1801498    |
| Barium     | 78.2   |           | 5.00 | 1        | 01/23/2022 16:27 | WG1801498    |
| Beryllium  | ND     |           | 2.00 | 1        | 01/23/2022 16:27 | WG1801498    |
| Boron      | ND     |           | 200  | 1        | 01/23/2022 16:27 | WG1801498    |
| Calcium    | 5790   |           | 1000 | 1        | 01/23/2022 16:27 | WG1801498    |
| Chromium   | 13.1   | <u>B1</u> | 10.0 | 1        | 01/23/2022 16:27 | WG1801498    |
| Cobalt     | ND     |           | 10.0 | 1        | 01/23/2022 16:27 | WG1801498    |
| Iron       | 11900  |           | 100  | 1        | 01/23/2022 16:27 | WG1801498    |
| Magnesium  | 3980   |           | 1000 | 1        | 01/23/2022 16:27 | WG1801498    |
| Manganese  | 210    |           | 10.0 | 1        | 01/23/2022 16:27 | WG1801498    |
| Molybdenum | ND     |           | 5.00 | 1        | 01/23/2022 16:27 | WG1801498    |
| Potassium  | ND     |           | 2000 | 1        | 01/23/2022 16:27 | WG1801498    |
|            |        |           |      |          |                  |              |

84

# MW-1-120

# SAMPLE RESULTS - 01

Collected date/time: 12/23/21 13:30

Metals (ICP) by Method 6010D

|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Sodium   | 20100  |           | 3000 | 1        | 01/23/2022 16:27 | WG1801498 |
| Vanadium | 43.7   | B1        | 20.0 | 1        | 01/23/2022 16:27 | WG1801498 |







| <b>J</b> 3      |
|-----------------|
| <sup>4</sup> Cn |

















|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|----------|--------|-----------|------|----------|------------------|-----------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |
| Antimony | ND     |           | 4.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Arsenic  | 3.81   |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Cadmium  | ND     |           | 1.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Copper   | 16.1   |           | 5.00 | 1        | 02/04/2022 14:54 | WG1808081 |
| Lead     | 5.62   |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Nickel   | 6.98   |           | 2.00 | 1        | 02/04/2022 14:54 | WG1808081 |
| Selenium | ND     |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Silver   | ND     |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Thallium | ND     |           | 2.00 | 1        | 01/28/2022 14:55 | WG1808081 |
| Uranium  | ND     |           | 20.0 | 1        | 01/28/2022 14:55 | WG1808081 |
| Zinc     | ND     |           | 25.0 | 1        | 01/28/2022 14:55 | WG1808081 |

# SAMPLE RESULTS - 02

# Collected date/time: 12/28/21 16:00 Preparation by Method 1312

|                 | Result | Qualifier | Prep                  | Batch     |
|-----------------|--------|-----------|-----------------------|-----------|
| Analyte         |        |           | date / time           |           |
| SPLP Extraction | -      |           | 1/11/2022 11:00:45 AM | WG1800166 |



# Wet Chemistry by Method 4500CN E-2016

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:35 | WG1802922 |



Cn

### Wet Chemistry by Method 4500CN G-2016

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte          | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide,amenable | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:35 | WG1802922 |



### Wet Chemistry by Method 4500P E-2011

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte          | ug/l   |           | ug/l |          | date / time      |           |
| Phosphate, Ortho | ND     | <u>H3</u> | 30.0 | 1        | 01/14/2022 22:01 | WG1802353 |



Ğl

### Wet Chemistry by Method 7196A

|                     | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte             | ug/l   |           | ug/l |          | date / time      |           |
| Chromium.Hexavalent | ND     | H3        | 10.0 | 1        | 01/14/2022 23:25 | WG1802664 |



### Wet Chemistry by Method 9056A

|                | Result | Qualifier | RDL   | Dilution | Analysis         | <u>Batch</u> |
|----------------|--------|-----------|-------|----------|------------------|--------------|
| Analyte        | ug/l   |           | ug/l  |          | date / time      |              |
| Bromide        | ND     |           | 10000 | 10       | 01/14/2022 11:37 | WG1802834    |
| Chloride       | ND     |           | 10000 | 10       | 01/14/2022 11:37 | WG1802834    |
| Fluoride       | ND     |           | 1500  | 10       | 01/14/2022 11:37 | WG1802834    |
| Nitrate as (N) | ND     | <u>H3</u> | 1000  | 10       | 01/14/2022 11:37 | WG1802834    |
| Nitrite as (N) | ND     | <u>H3</u> | 1000  | 10       | 01/14/2022 11:37 | WG1802834    |
| Sulfate        | ND     |           | 50000 | 10       | 01/14/2022 11:37 | WG1802834    |



### Mercury by Method 7470A

|         | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|---------|--------|-----------|-------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l  |          | date / time      |           |
| Mercury | ND     |           | 0.200 | 1        | 01/17/2022 14:47 | WG1802268 |

# Metals (ICP) by Method 6010D

|            | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|------------|--------|-----------|------|----------|------------------|--------------|
| Analyte    | ug/l   |           | ug/l |          | date / time      |              |
| Aluminum   | 7850   |           | 200  | 1        | 01/23/2022 16:36 | WG1801498    |
| Barium     | 73.1   |           | 5.00 | 1        | 01/23/2022 16:36 | WG1801498    |
| Beryllium  | ND     |           | 2.00 | 1        | 01/23/2022 16:36 | WG1801498    |
| Boron      | ND     |           | 200  | 1        | 01/23/2022 16:36 | WG1801498    |
| Calcium    | 7500   |           | 1000 | 1        | 01/23/2022 16:36 | WG1801498    |
| Chromium   | 18.5   | <u>B1</u> | 10.0 | 1        | 01/23/2022 16:36 | WG1801498    |
| Cobalt     | ND     |           | 10.0 | 1        | 01/23/2022 16:36 | WG1801498    |
| Iron       | 12100  |           | 100  | 1        | 01/23/2022 16:36 | WG1801498    |
| Magnesium  | 5030   |           | 1000 | 1        | 01/23/2022 16:36 | WG1801498    |
| Manganese  | 193    |           | 10.0 | 1        | 01/23/2022 16:36 | WG1801498    |
| Molybdenum | ND     |           | 5.00 | 1        | 01/23/2022 16:36 | WG1801498    |
| Potassium  | ND     |           | 2000 | 1        | 01/23/2022 16:36 | WG1801498    |
|            |        |           |      |          |                  |              |

86

# MW-1-291

# SAMPLE RESULTS - 02

### Collected date/time: 12/28/21 16:00 Metals (ICP) by Method 6010D

| , , ,    |        |           |      |          |                  |           |  |
|----------|--------|-----------|------|----------|------------------|-----------|--|
|          | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |  |
| Analyte  | ug/l   |           | ug/l |          | date / time      |           |  |
| Sodium   | 24100  |           | 3000 | 1        | 01/23/2022 16:36 | WG1801498 |  |
| Vanadium | 33.8   | R1        | 20.0 | 1        | 01/23/2022 16:36 | WG1801498 |  |





### Metals (ICPMS) by Method 6020B

|          | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|----------|--------|-----------|------|----------|------------------|--------------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |              |
| Antimony | ND     |           | 4.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Arsenic  | 2.66   |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Cadmium  | ND     |           | 1.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Copper   | 23.2   |           | 5.00 | 1        | 02/04/2022 14:58 | WG1808081    |
| Lead     | 5.67   |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Nickel   | 17.9   |           | 2.00 | 1        | 02/04/2022 14:58 | WG1808081    |
| Selenium | ND     |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Silver   | ND     |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Thallium | ND     |           | 2.00 | 1        | 01/28/2022 14:59 | WG1808081    |
| Uranium  | ND     |           | 20.0 | 1        | 01/28/2022 14:59 | WG1808081    |
| Zinc     | 45.8   |           | 25.0 | 1        | 01/28/2022 14:59 | WG1808081    |

















# SAMPLE RESULTS - 03

# Collected date/time: 12/29/21 12:30 Preparation by Method 1312

|                 | Result | Qualifier | Prep                  | <u>Batch</u> |
|-----------------|--------|-----------|-----------------------|--------------|
| Analyte         |        |           | date / time           |              |
| SPLP Extraction | -      |           | 1/11/2022 11:00:45 AM | WG1800166    |

# Wet Chemistry by Method 4500CN E-2016

|         | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------|--------|-----------|------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:36 | WG1802922 |



Cn

### Wet Chemistry by Method 4500CN G-2016

|                  | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte          | ug/l   |           | ug/l |          | date / time      |           |
| Cyanide,amenable | ND     | <u>H3</u> | 5.00 | 1        | 01/18/2022 18:36 | WG1802922 |



### Wet Chemistry by Method 4500P E-2011

|                 | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|-----------------|--------|-----------|------|----------|------------------|-----------|
| Analyte         | ug/l   |           | ug/l |          | date / time      |           |
| Phosphate,Ortho | ND     | <u>H3</u> | 30.0 | 1        | 01/14/2022 22:01 | WG1802353 |



Ğl

### Wet Chemistry by Method 7196A

|                     | Result | Qualifier | RDL  | Dilution | Analysis         | Batch     |
|---------------------|--------|-----------|------|----------|------------------|-----------|
| Analyte             | ug/l   |           | ug/l |          | date / time      |           |
| Chromium Hexavalent | ND     | H3        | 10.0 | 1        | 01/14/2022 23:25 | WG1802664 |



### Wet Chemistry by Method 9056A

| , ,            | '      |           |        |          |                  |              |
|----------------|--------|-----------|--------|----------|------------------|--------------|
|                | Result | Qualifier | RDL    | Dilution | Analysis         | <u>Batch</u> |
| Analyte        | ug/l   |           | ug/l   |          | date / time      |              |
| Bromide        | ND     |           | 100000 | 100      | 01/14/2022 18:59 | WG1802834    |
| Chloride       | ND     |           | 100000 | 100      | 01/14/2022 18:59 | WG1802834    |
| Fluoride       | ND     |           | 15000  | 100      | 01/14/2022 18:59 | WG1802834    |
| Nitrate as (N) | ND     | <u>H3</u> | 10000  | 100      | 01/14/2022 18:59 | WG1802834    |
| Nitrite as (N) | ND     | <u>H3</u> | 10000  | 100      | 01/14/2022 18:59 | WG1802834    |
| Sulfate        | ND     |           | 500000 | 100      | 01/14/2022 18:59 | WG1802834    |



### Mercury by Method 7470A

|         | Result | Qualifier | RDL   | Dilution | Analysis         | Batch     |
|---------|--------|-----------|-------|----------|------------------|-----------|
| Analyte | ug/l   |           | ug/l  |          | date / time      |           |
| Mercury | ND     |           | 0.200 | 1        | 01/17/2022 14:49 | WG1802268 |

| <u>Batch</u> |
|--------------|
| WC10000C0    |

# Metals (ICP) by Method 6010D

|            | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|------------|--------|-----------|------|----------|------------------|--------------|
| Analyte    | ug/l   |           | ug/l |          | date / time      |              |
| Aluminum   | 3590   |           | 200  | 1        | 01/23/2022 16:38 | WG1801498    |
| Barium     | 39.9   |           | 5.00 | 1        | 01/23/2022 16:38 | WG1801498    |
| Beryllium  | ND     |           | 2.00 | 1        | 01/23/2022 16:38 | WG1801498    |
| Boron      | ND     |           | 200  | 1        | 01/23/2022 16:38 | WG1801498    |
| Calcium    | 10700  |           | 1000 | 1        | 01/23/2022 16:38 | WG1801498    |
| Chromium   | ND     |           | 10.0 | 1        | 01/23/2022 16:38 | WG1801498    |
| Cobalt     | ND     |           | 10.0 | 1        | 01/23/2022 16:38 | WG1801498    |
| Iron       | 3990   |           | 100  | 1        | 01/23/2022 16:38 | WG1801498    |
| Magnesium  | 2790   |           | 1000 | 1        | 01/23/2022 16:38 | WG1801498    |
| Manganese  | 82.2   |           | 10.0 | 1        | 01/23/2022 16:38 | WG1801498    |
| Molybdenum | ND     |           | 5.00 | 1        | 01/23/2022 16:38 | WG1801498    |
| Potassium  | ND     |           | 2000 | 1        | 01/23/2022 16:38 | WG1801498    |
|            |        |           |      |          |                  |              |

88

# MW-1-340

# SAMPLE RESULTS - 03

Collected date/time: 12/29/21 12:30 Motals (ICD) by Mothad 6010D

| Metals (ICP) by | Method | 60101 | ע |
|-----------------|--------|-------|---|
|                 |        |       |   |

|          | Result | ult <u>Qualifier</u> RDL |      | Dilution | Analysis         | Batch     |
|----------|--------|--------------------------|------|----------|------------------|-----------|
| Analyte  | ug/l   |                          | ug/l |          | date / time      |           |
| Sodium   | 58200  |                          | 3000 | 1        | 01/23/2022 16:38 | WG1801498 |
| Vanadium | 42.2   | B1                       | 20.0 | 1        | 01/23/2022 16:38 | WG1801498 |





# Metals (ICPMS) by Method 6020B

|          | Result | Qualifier | RDL  | Dilution | Analysis         | <u>Batch</u> |
|----------|--------|-----------|------|----------|------------------|--------------|
| Analyte  | ug/l   |           | ug/l |          | date / time      |              |
| Antimony | ND     |           | 4.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Arsenic  | 2.03   |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Cadmium  | ND     |           | 1.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Copper   | 6.33   |           | 5.00 | 1        | 02/04/2022 14:41 | WG1808081    |
| Lead     | 2.23   |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Nickel   | 2.33   |           | 2.00 | 1        | 02/04/2022 14:41 | WG1808081    |
| Selenium | ND     |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Silver   | ND     |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Thallium | ND     |           | 2.00 | 1        | 01/28/2022 14:42 | WG1808081    |
| Uranium  | ND     |           | 20.0 | 1        | 01/28/2022 14:42 | WG1808081    |
| Zinc     | ND     |           | 25.0 | 1        | 01/28/2022 14:42 | WG1808081    |

















### QUALITY CONTROL SUMMARY

L1449323-01,02,03

Wet Chemistry by Method 4500CN E-2016

### Method Blank (MB)

|                 | (=)            |
|-----------------|----------------|
| (MB) R3751066-1 | 01/18/22 18:29 |

|         | MB Result | MB Qualifier | MB MDL | MB RDL |
|---------|-----------|--------------|--------|--------|
| Analyte | ug/l      |              | ug/l   | ug/l   |
| Cvanide | U         |              | 1.80   | 5.00   |





### L1451411-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1451411-02 01/18/22 18:44 • (DUP) R3751066-3 01/18/22 18:45

|         | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte | ug/l            | ug/l       |          | %       |               | %                 |
| Cyanide | 22.5            | 25.9       | 1        | 14.0    |               | 20                |





# Sr

### L1451558-03 Original Sample (OS) • Duplicate (DUP)

(OC) | 1/151550 02 01/10/22 10/5/ , (DLID) D2751066 6 01/10/22 10/55

|         | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte | ug/l            | ug/l       |          | %       |               | %                 |
| Cyanide | ND              | ND         | 1        | 0.000   |               | 20                |







### Laboratory Control Sample (LCS)

(LCS) R3751066-2 01/18/22 18:30

|         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|---------|--------------|------------|----------|-------------|---------------|
| Analyte | ug/l         | ug/l       | %        | %           |               |
| Cyanide | 100          | 97.5       | 97.5     | 87.1-120    |               |

### L1451548-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1451548-02 01/18/22 18:49 • (MS) R3751066-4 01/18/22 18:50 • (MSD) R3751066-5 01/18/22 18:51

|         | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Cyanide | 100          | ND              | 94.9      | 108        | 94.9    | 108      | 1        | 90.0-110    |              |               | 12.9 | 20         |

# L1451645-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1451645-03 01/18/22 18:57 • (MS) R3751066-7 01/18/22 18:58 • (MSD) R3751066-8 01/18/22 18:59

|         | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |
| Cyanide | 100          | ND              | 101       | 99.8       | 101     | 99.8     | 1        | 90.0-110    |              |               | 1.20 | 20         |

90

ACCOUNT: Hargis and Associates PROJECT: 1311..01

SDG: L1449323

DATE/TIME: 02/04/22 16:12

PAGE: 12 of 24

### QUALITY CONTROL SUMMARY

L1449323-01,02,03

Wet Chemistry by Method 4500P E-2011

### Method Blank (MB)

| (MB) R3750230-1 01/14/22 22:01 |
|--------------------------------|
|--------------------------------|

|                  | MB Result | MB Qualifier | MB MDL | MB RDL |
|------------------|-----------|--------------|--------|--------|
| Analyte          | ug/l      |              | ug/l   | ug/l   |
| Phosphate, Ortho | U         |              | 14.0   | 30.0   |

# 2





### L1449323-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1449323-01 01/14/22 22:01 • (DUP) R3750230-3 01/14/22 22:01

|                  | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte          | ug/l            | ug/l       |          | %       |               | %                 |
| Phosphate, Ortho | ND              | ND         | 1        | 0.000   |               | 20                |









(OS) L1451198-08 01/14/22 22:07 • (DUP) R3750230-4 01/14/22 22:08









(LCS) R3750230-2 01/14/22 22:01

|                  | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|------------------|--------------|------------|----------|-------------|---------------|
| Analyte          | ug/l         | ug/l       | %        | %           |               |
| Phosphate, Ortho | 245          | 237        | 96.9     | 85.0-115    |               |



### L1451274-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1451274-02 01/14/22 22:10 • (MS) R3750230-5 01/14/22 22:10 • (MSD) R3750230-6 01/14/22 22:11

|                  | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte          | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Phosphate, Ortho | 500          | 567             | 1060      | 1060       | 99.4    | 99.4     | 1        | 80.0-120    | E1           | E1            | 0.000 | 20         |

### QUALITY CONTROL SUMMARY

L1449323-01,02,03

Wet Chemistry by Method 7196A

### Method Blank (MB)

(MB) R3750237-1 01/14/22 23:22

|                      | MB Result | MB Qualifier | MB MDL | MB RDL |
|----------------------|-----------|--------------|--------|--------|
| Analyte              | ug/l      |              | ug/l   | ug/l   |
| Chromium, Hexavalent | U         |              | 3.00   | 10.0   |





# Ss

### L1449323-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1449323-03 01/14/22 23:25 • (DUP) R3750237-6 01/14/22 23:26

|                     | Original Result | DUP Result | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
|---------------------|-----------------|------------|----------|---------|---------------|-------------------|
| Analyte             | ug/l            | ug/l       |          | %       |               | %                 |
| Chromium.Hexavalent | ND              | ND         | 1        | 0.000   |               | 20                |





# Sr



(LCS) R3750237-2 01/14/22 23:23 • (LCSD) R3750237-3 01/14/22 23:24

|                      | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
|----------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|
| Analyte              | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %    | %          |
| Chromium, Hexavalent | 500          | 513        | 495         | 103      | 99.0      | 80.0-120    |               |                | 3.57 | 20         |











(OS) L1449323-01 01/14/22 23:24 • (MS) R3750237-4 01/14/22 23:25 • (MSD) R3750237-5 01/14/22 23:25

|                      | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte              | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Chromium, Hexavalent | 500          | ND              | 204       | 202        | 40.2    | 39.8     | 1        | 85.0-115    | <u>M2</u>    | <u>M2</u>     | 0.985 | 20         |

# QUALITY CONTROL SUMMARY

L1449323-01,02,03

# Wet Chemistry by Method 9056A Method Blank (MB)

| (MB) R3750304-2 | 01/14/22 11:00 |              |        |        |
|-----------------|----------------|--------------|--------|--------|
|                 | MB Result      | MB Qualifier | MB MDL | MB RDL |
| Analyte         | ug/l           |              | ug/l   | ug/l   |
| Bromide         | U              |              | 353    | 1000   |
| Chloride        | 567            | <u>E4</u>    | 379    | 1000   |
| Fluoride        | U              |              | 64.0   | 150    |
| Nitrate         | U              |              | 48.0   | 100    |
| Nitrite         | U              |              | 42.0   | 100    |
| Sulfato         | 11             |              | EOA    | EOOO   |

### Laboratory Control Sample (LCS)

| (LCS) R3750304-1 01 | .CS) R3750304-1 01/14/22 10:14 |            |          |             |               |  |  |  |  |  |  |
|---------------------|--------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|--|
|                     | Spike Amount                   | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |  |
| Analyte             | ug/l                           | ug/l       | %        | %           |               |  |  |  |  |  |  |
| Bromide             | 40000                          | 39700      | 99.3     | 80.0-120    |               |  |  |  |  |  |  |
| Chloride            | 40000                          | 40100      | 100      | 80.0-120    |               |  |  |  |  |  |  |
| Fluoride            | 8000                           | 8250       | 103      | 80.0-120    |               |  |  |  |  |  |  |
| Nitrate             | 8000                           | 7930       | 99.1     | 80.0-120    |               |  |  |  |  |  |  |
| Nitrite             | 8000                           | 8290       | 104      | 80.0-120    |               |  |  |  |  |  |  |
| Sulfate             | 40000                          | 40200      | 100      | 80.0-120    |               |  |  |  |  |  |  |





















### QUALITY CONTROL SUMMARY

L1449323-01,02,03

# Mercury by Method 7470A Method Blank (MB)

(MB) R3750628-1 01/17/22 14:30







### Laboratory Control Sample (LCS)

(LCS) R3750628-2 01/17/22 14:37

|         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|---------|--------------|------------|----------|-------------|---------------|
| Analyte | ug/l         | ug/l       | %        | %           |               |
| Mercury | 3.00         | 2.89       | 96.5     | 80.0-120    |               |









### L1449323-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1449323-01 01/17/22 14:40 • (MS) R3750628-3 01/17/22 14:42 • (MSD) R3750628-4 01/17/22 14:44

| ,       | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %    | %          |  |
| Mercury | 3.00         | ND              | 2 99      | 3 10       | 99.5    | 103      | 1        | 75 0-125    |              |               | 3 63 | 20         |  |









# QUALITY CONTROL SUMMARY

L1449323-01,02,03

### Method Blank (MB)

Metals (ICP) by Method 6010D

| (MB) R3752751-1 01/2 | MB) R3752751-1 01/23/22 16:03 |              |        |        |  |  |  |  |  |  |  |
|----------------------|-------------------------------|--------------|--------|--------|--|--|--|--|--|--|--|
|                      | MB Result                     | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |  |  |
| Analyte              | ug/l                          |              | ug/l   | ug/l   |  |  |  |  |  |  |  |
| Aluminum             | U                             |              | 56.1   | 200    |  |  |  |  |  |  |  |
| Barium               | U                             |              | 0.736  | 5.00   |  |  |  |  |  |  |  |
| Beryllium            | U                             |              | 0.330  | 2.00   |  |  |  |  |  |  |  |
| Boron                | U                             |              | 20.0   | 200    |  |  |  |  |  |  |  |
| Calcium              | U                             |              | 79.3   | 1000   |  |  |  |  |  |  |  |
| Chromium             | 2.02                          | <u>E4</u>    | 1.40   | 10.0   |  |  |  |  |  |  |  |
| Cobalt               | U                             |              | 0.840  | 10.0   |  |  |  |  |  |  |  |
| Iron                 | U                             |              | 18.0   | 100    |  |  |  |  |  |  |  |
| Magnesium            | U                             |              | 85.3   | 1000   |  |  |  |  |  |  |  |
| Manganese            | U                             |              | 0.934  | 10.0   |  |  |  |  |  |  |  |
| Molybdenum           | U                             |              | 1.16   | 5.00   |  |  |  |  |  |  |  |
| Potassium            | U                             |              | 261    | 2000   |  |  |  |  |  |  |  |
| Sodium               | U                             |              | 504    | 3000   |  |  |  |  |  |  |  |
| Vanadium             | 6.31                          | <u>E4</u>    | 4.99   | 20.0   |  |  |  |  |  |  |  |

### Laboratory Control Sample (LCS)

| (LCS) R3752751-2 01/23/ |              |            |          |             |               |
|-------------------------|--------------|------------|----------|-------------|---------------|
|                         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                 | ug/l         | ug/l       | %        | %           |               |
| Aluminum                | 10000        | 10500      | 105      | 80.0-120    |               |

| Analyte    | ug/l  | ug/l  | %    | %        |  |
|------------|-------|-------|------|----------|--|
| Aluminum   | 10000 | 10500 | 105  | 80.0-120 |  |
| Barium     | 1000  | 962   | 96.2 | 80.0-120 |  |
| Beryllium  | 1000  | 1030  | 103  | 80.0-120 |  |
| Boron      | 1000  | 1030  | 103  | 80.0-120 |  |
| Calcium    | 10000 | 10300 | 103  | 80.0-120 |  |
| Chromium   | 1000  | 914   | 91.4 | 80.0-120 |  |
| Cobalt     | 1000  | 975   | 97.5 | 80.0-120 |  |
| Iron       | 10000 | 10100 | 101  | 80.0-120 |  |
| Magnesium  | 10000 | 10500 | 105  | 80.0-120 |  |
| Manganese  | 1000  | 1020  | 102  | 80.0-120 |  |
| Molybdenum | 1000  | 1050  | 105  | 80.0-120 |  |
| Potassium  | 10000 | 9730  | 97.3 | 80.0-120 |  |
| Sodium     | 10000 | 10200 | 102  | 80.0-120 |  |
| Vanadium   | 1000  | 1060  | 106  | 80.0-120 |  |

















# QUALITY CONTROL SUMMARY

L1449323-01,02,03

Metals (ICP) by Method 6010D

### L1440581-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1440581-02 01/23/22 16:08 • (MS) R3752751-4 01/23/22 16:14 • (MSD) R3752751-5 01/23/22 16:16

|            | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte    | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Aluminum   | 10000        | 1710            | 12700     | 12400      | 110     | 107      | 1        | 75.0-125    |              |               | 2.57  | 20         |
| Barium     | 1000         | 565             | 1510      | 1500       | 94.5    | 93.7     | 1        | 75.0-125    |              |               | 0.550 | 20         |
| Beryllium  | 1000         | ND              | 1050      | 1050       | 105     | 105      | 1        | 75.0-125    |              |               | 0.542 | 20         |
| Boron      | 1000         | ND              | 1110      | 1090       | 108     | 106      | 1        | 75.0-125    |              |               | 1.87  | 20         |
| Calcium    | 10000        | 376000          | 380000    | 377000     | 41.7    | 12.6     | 1        | 75.0-125    | <u>M3</u>    | <u>M3</u>     | 0.768 | 20         |
| Chromium   | 1000         | 11.4            | 918       | 912        | 90.7    | 90.1     | 1        | 75.0-125    |              |               | 0.644 | 20         |
| Cobalt     | 1000         | ND              | 1020      | 1010       | 102     | 101      | 1        | 75.0-125    |              |               | 0.631 | 20         |
| Iron       | 10000        | ND              | 10200     | 10100      | 101     | 100      | 1        | 75.0-125    |              |               | 0.959 | 20         |
| Magnesium  | 10000        | ND              | 10200     | 10000      | 102     | 100      | 1        | 75.0-125    |              |               | 2.17  | 20         |
| Manganese  | 1000         | ND              | 1020      | 1010       | 102     | 101      | 1        | 75.0-125    |              |               | 0.462 | 20         |
| Molybdenum | 1000         | 177             | 1240      | 1230       | 106     | 106      | 1        | 75.0-125    |              |               | 0.402 | 20         |
| Potassium  | 10000        | 42600           | 52000     | 51500      | 93.4    | 88.8     | 1        | 75.0-125    |              |               | 0.881 | 20         |
| Sodium     | 10000        | 64100           | 72300     | 71200      | 81.9    | 70.8     | 1        | 75.0-125    |              | <u>M3</u>     | 1.54  | 20         |
| Vanadium   | 1000         | ND              | 1100      | 1080       | 110     | 108      | 1        | 75.0-125    |              |               | 1.24  | 20         |





















PAGE:

18 of 24

# QUALITY CONTROL SUMMARY

L1449323-01,02,03

# Method Blank (MB)

Metals (ICPMS) by Method 6020B

(MB) R3754705-1 01/28/22 14:36 MB Result MB Qualifier MB MDL MB RDL Analyte ug/l ug/l ug/l U Antimony 1.03 4.00 2.00 Arsenic 0.180 Cadmium U 0.150 1.00 Lead U 0.849 2.00 Selenium U 0.300 2.00 U 0.0700 2.00 Silver Thallium U 0.121 2.00 Uranium U 0.0700 20.0 Zinc U 3.02 25.0

### Method Blank (MB)

| (MB) R3757050-1 02 | (MB) R3757050-1 02/04/22 14:34 |              |        |        |  |  |  |  |  |  |
|--------------------|--------------------------------|--------------|--------|--------|--|--|--|--|--|--|
|                    | MB Result                      | MB Qualifier | MB MDL | MB RDL |  |  |  |  |  |  |
| Analyte            | ug/l                           |              | ug/l   | ug/l   |  |  |  |  |  |  |
| Copper             | U                              |              | 1.51   | 5.00   |  |  |  |  |  |  |
| Nickel             | U                              |              | 0.816  | 2.00   |  |  |  |  |  |  |

# Laboratory Control Sample (LCS)

(LCS) R3754705-2 01/28/22 14:39

|          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|----------|--------------|------------|----------|-------------|---------------|
| Analyte  | ug/l         | ug/l       | %        | %           |               |
| Antimony | 50.0         | 46.4       | 92.7     | 80.0-120    |               |
| Arsenic  | 50.0         | 47.7       | 95.4     | 80.0-120    |               |
| Cadmium  | 50.0         | 51.7       | 103      | 80.0-120    |               |
| Lead     | 50.0         | 48.9       | 97.8     | 80.0-120    |               |
| Selenium | 50.0         | 59.4       | 119      | 80.0-120    |               |
| Silver   | 50.0         | 49.0       | 97.9     | 80.0-120    |               |
| Thallium | 50.0         | 48.6       | 97.3     | 80.0-120    |               |
| Uranium  | 50.0         | 48.5       | 97.0     | 80.0-120    |               |
| Zinc     | 500          | 473        | 94.7     | 80.0-120    |               |



















### QUALITY CONTROL SUMMARY

L1449323-01,02,03

Metals (ICPMS) by Method 6020B

### Laboratory Control Sample (LCS)

(LCS) R3757050-2 02/04/22 14:37

|         | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
|---------|--------------|------------|----------|-------------|---------------|
| Analyte | ug/l         | ug/l       | %        | %           |               |
| Copper  | 50.0         | 49.2       | 98.3     | 80.0-120    |               |
| Nickel  | 50.0         | 56.5       | 113      | 80.0-120    |               |





<sup>†</sup>Cn

### L1449323-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1449323-03 01/28/22 14:42 • (MS) R3754705-4 01/28/22 14:49 • (MSD) R3754705-5 01/28/22 14:52

|          | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |  |  |
|----------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|--|--|
| Analyte  | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |  |  |
| Antimony | 50.0         | ND              | 45.7      | 44.5       | 91.4    | 89.1     | 1        | 75.0-125    |              |               | 2.57  | 20         |  |  |  |
| Arsenic  | 50.0         | 2.03            | 50.6      | 50.1       | 97.2    | 96.0     | 1        | 75.0-125    |              |               | 1.15  | 20         |  |  |  |
| Cadmium  | 50.0         | ND              | 51.0      | 50.8       | 102     | 102      | 1        | 75.0-125    |              |               | 0.368 | 20         |  |  |  |
| Lead     | 50.0         | 2.23            | 51.6      | 51.7       | 98.8    | 99.0     | 1        | 75.0-125    |              |               | 0.111 | 20         |  |  |  |
| Selenium | 50.0         | ND              | 58.3      | 58.4       | 117     | 117      | 1        | 75.0-125    |              |               | 0.213 | 20         |  |  |  |
| Silver   | 50.0         | ND              | 48.4      | 49.0       | 96.8    | 98.0     | 1        | 75.0-125    |              |               | 1.30  | 20         |  |  |  |
| Thallium | 50.0         | ND              | 46.6      | 46.3       | 93.2    | 92.5     | 1        | 75.0-125    |              |               | 0.692 | 20         |  |  |  |
| Uranium  | 50.0         | ND              | 48.7      | 48.5       | 97.0    | 96.7     | 1        | 75.0-125    |              |               | 0.391 | 20         |  |  |  |
| Zinc     | 500          | ND              | 501       | 505        | 97.0    | 97.9     | 1        | 75.0-125    |              |               | 0.876 | 20         |  |  |  |

















Sc

### L1449323-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1449323-03 02/04/22 14:41 • (MS) R3757050-4 02/04/22 14:47 • (MSD) R3757050-5 02/04/22 14:51

| ,       | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|---------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Copper  | 50.0         | 6.33            | 59.7      | 60.8       | 107     | 109      | 1        | 75.0-125    |              |               | 1.93  | 20         |
| Nickel  | 50.0         | 2.33            | 57.5      | 57.4       | 110     | 110      | 1        | 75.0-125    |              |               | 0.203 | 20         |

### **GLOSSARY OF TERMS**

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| Abbic viations and              | Deminions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                              | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier | Description       |
|-----------|-------------------|
| D1        | Tayarat analyta a |

| B1 | Target analyte detected in method blank at or above the method reporting limit.                                                                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E1 | Concentration estimated. Analyte exceeded calibration range. Reanalysis not possible due to insufficient sample.                                                               |
| E4 | Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL) but above MDL.                                                                    |
| H3 | Sample was received and / or analysis requested past holding time.                                                                                                             |
| M2 | Matrix spike recovery was low, the method control sample recovery was acceptable.                                                                                              |
| M3 | The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The associated blank spike recovery was acceptable. |





















# **ACCREDITATIONS & LOCATIONS**

| Dags Applytical National | 1206E Lohanan Dd Maunt | Luliat TNI 27122 |
|--------------------------|------------------------|------------------|
| Pace Analytical National | 12065 Lebanon Rd Mount | Juliel. TN 3/122 |

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| Florida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| Idaho                         | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois                      | 200008      | Oklahoma                    | 9915             |
| Indiana                       | C-TN-01     | Oregon                      | TN200002         |
| lowa                          | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LA000356         |
| Kentucky 16                   | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| Louisiana                     | Al30792     | Tennessee 1 4               | 2006             |
| Louisiana                     | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Minnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
|                               |             |                             |                  |



<sup>\*</sup> Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto





















 $<sup>^* \, \</sup>text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$ 

| HARGIS + ASSOCIATES, INC.                                                                                                                                          | CHAIN-OF-                             | CUSTODY                                       | RECORD                                                                                          | AND ANA                                                                                                                                                          | LYSIS REQUES                             | FORM                                                   | DATE 12/30/21                                                                                | PAGE / OF /                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NAME MWA-OEST                                                                                                                                              | 1 5                                   | PROJECT No./TA                                | SK No.                                                                                          | SAMPLE CONTAINERS                                                                                                                                                | ANALYSIS<br>REQUESTED                    | ESTIMATED<br>CONCENTRATION<br>RANGE (ppb)<br>FOR VOA'S | SPECIAL HANDLING                                                                             | LABORATORY<br>INFORMATION                                                                                                                                                              |
| OA MANAGER STATIAL CO                                                                                                                                              |                                       | Fax No.  SAMPLER (PRINT                       |                                                                                                 | या उनेह                                                                                                                                                          | 1312) The Gove                           | FOR VOAS                                               | AC WATER                                                                                     | PACE<br>ANAVACAL<br>576NAL HICL<br>(615) 773-7541                                                                                                                                      |
| LAB SAMPLE                                                                                                                                                         | SAMPLE COLLECTION                     | MATRIX                                        | PRESER-<br>VATION                                                                               | 222                                                                                                                                                              | SASSASSASSASSASSASSASSASSASSASSASSASSAS  |                                                        | LUGONI<br>LWST)<br>EMST<br>EMST<br>FOR                                                       | 414 19323                                                                                                                                                                              |
| ID ID                                                                                                                                                              | Date                                  | Soll Ground Water Surface water HCI           | HNO3<br>NaOH<br>H2SO4<br>Ice                                                                    | 20-0                                                                                                                                                             | TO T |                                                        | 134 HOLD                                                                                     | REMARKS                                                                                                                                                                                |
| -22 MW-1-291                                                                                                                                                       | 12/23/21 13:30                        | X                                             | X                                                                                               | 21                                                                                                                                                               |                                          |                                                        | X                                                                                            | HOPE LON                                                                                                                                                                               |
|                                                                                                                                                                    |                                       |                                               |                                                                                                 |                                                                                                                                                                  |                                          |                                                        |                                                                                              |                                                                                                                                                                                        |
| Samp CXI Seal Present/Inter CXI Seal Present/Inter CXI Signed Accurate: Estiles acrive intect: Correct bottles used: Suffacient volume sent RAP Screen <0.5 mR/hr: | N Pres. Cocca                         | Applicable deadepare Y act Theck: Y t         |                                                                                                 |                                                                                                                                                                  |                                          |                                                        |                                                                                              |                                                                                                                                                                                        |
| Relinquished by:  Relinquished by:  Company  Relinquished by:  Dat  1/3/3  Tim  PACE Company  1630                                                                 | e PACE Company  e Received by:  A C C | Date 13/9/21 Time 11:45 Date 1/4/10 Time 1430 | (lab use of 2. Complete initial and 3. Indicate of space; in 4. Note app and devia 5. Consult p | orm completely endingly, sign only are in ballpoint per didate correction number of samp dicate choice willicable preservations from typic project QA documents. | e containers in analysis re              | ess. rors, quest ons.  ction/cold                      | Send Results to:  SIMA ZEL  \$171 TOWNE CEN SAN DIEGO, CA 9:  1640 SOUTH STAF MESA, AZ 85204 | HAMY DENVEL  571-11 FRAZEN  0 1 1 ARC-1 J. C. 6 m  THE DRIVE, SUITE 375 2122 (858) 455-6500  PLEY DRIVE, SUITE 209 (480) 345-0889  CLE ROAD, SUITE 202  4 (520) 881-7300  In Diego, CA |

### Relog L1447633 HARGMAZ

R<sub>5</sub>

Please relog L1447633, all samples for SPLP analysis for the following tests:

Metals-CAM17 + B, Ca, Fe, Mg, K, Na, Al, Mn, U

Hexavalent chromium

Bromide

Chloride

Nitrate

Nitrite

Sulfate

Fluoride

Cyanide

Cyanide, amenable

Orthophosphate

Thanks

NOTICE—The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately and delete any copies.

P Please consider the environment before printing this email

Time estimate: oh

Time spent: oh

Members

(DR) Daphne Richards (responsible)

# APPENDIX D GEOTECHNICAL LABORATORY REPORTS

# INTEGRATED GEOSCIENCES LABORATORIES, LLC

Environmental \* Geotechnical \* Core Analysis

6016 Centralcrest Street • Houston, Texas 77092 Telephone (713) 316-1800 • Fax (877) 255-9953

April 4, 2022

Stacia Prazen
Project Manager,
Hargis + Associates, Inc..
3131 Camino del Rio North, Suite 355,
San Diego, CA 92108.

Re: IGS Labs File No: 2203-53

Project Name: Mojave Water Agency - Oeste

Project Number: 1311.01

Site Location: Pinon Hills, California

Subject: Final Report: Effective Porosity-(ASTM D425), Dry Bulk Density-(ASTM

D2937), Hydraulic Conductivity - (ASTM D5084), Soil Moisture Retention

Curve – (ASTM D6836), and Grain Size Distribution – (ASTM D422).

Dear Stacia Prazen,

Please find enclosed report for Physical Properties analyses conducted on soil samples received from your "Mojave Water Agency - Oeste" project. All analyses were performed by applicable ASTM, EPA, or API methodologies. The samples are currently in storage and will be retained for thirty days past the completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples.

Integrated Geosciences Laboratories appreciate the opportunity to be of service. If you have any questions or require additional information, please contact me or Emeka Anazodo at (713) 316-1800.

Sincerely, Integrated Geosciences Laboratories, LLC.

### **Wumi Andrew**

Laboratory Technician. Encl.

Integrated Geosciences Laboratories, LLC.

Project Name: Mojave Water Agency - Oeste IGS Labs File No: 2203-53

Project Number: 1311.01

Client: Hargis + Associates, Inc. Site Location: Pinon Hills, California

3/28/2022 **Date Received:** 

### **TEST PROGRAM - 20220328**

| Serial<br>Number | COC<br>Sample ID        | Date; Time<br>Sampled | Depth<br>(feet) | Matrix<br>Type | Soil Moisture<br>Retention Curve | Effective<br>Porosity<br>mod. ASTM D425 | Grain Size<br>Analysis<br>ASTM D422 | Hydraulic<br>Conductivity | Bulk Density  ASTM D2937 | Comments                          |
|------------------|-------------------------|-----------------------|-----------------|----------------|----------------------------------|-----------------------------------------|-------------------------------------|---------------------------|--------------------------|-----------------------------------|
|                  | Date Received: 20220328 |                       |                 |                |                                  |                                         |                                     | VERTICAL                  |                          |                                   |
| 1                | Oeste-Recharge-224      | 02/2/22; 16:00        | 224-224.5       | Soil           |                                  | Х                                       | Х                                   | Х                         | х                        | 1- [2" X 6" stainless steel tube] |
| 2                | Oeste-Recharge-260      | 02/3/22; 14:00        | 260-260.5       | Soil           | х                                | Х                                       | Х                                   | Х                         | х                        | 1- [2" X 6" stainless steel tube] |
| 3                | Oeste-Recharge-501      | 02/7/22; 09:45        | 501-501.5       | Soil           | Х                                | Х                                       | х                                   | Х                         | Х                        | 1- [2" X 6" stainless steel tube] |
| 4                | Oeste-Recharge-660      | 02/8/22; 10:25        | 660-660.5       | Soil           |                                  | Х                                       | Х                                   | Х                         | Х                        | 1- [2" X 6" stainless steel tube] |
|                  | TOTAL                   |                       |                 |                | 2                                | 4                                       | 4                                   | 4                         | 4                        | 4                                 |

### **Laboratory Test Program Notes**

<sup>1.</sup> Standard TAT for basic analysis is 10-15 business days.

# **Integrated Geosciences Laboratories, LLC**

### PHYSICAL PROPERTIES DATA - DRAINAGE (EFFECTIVE) POROSITY

IGS Labs File No: 2203-53

Client: Hargis + Associates, Inc.

Report Date: 4/4/2022

Project Name: Project No: Mojave Water Agency - Oeste

1311.01

Site Location: Pinon Hills, California

API RP 40 /

|                    |          |               |                              | METHODS:         | <b>ASTM D2216</b>                | API RP40                 | Mod. ASTM D425                | Mod. ASTM D425                |
|--------------------|----------|---------------|------------------------------|------------------|----------------------------------|--------------------------|-------------------------------|-------------------------------|
| SAMPLE<br>ID.      | IGS Labs | DEPTH,<br>ft. | SAMPLE<br>ORIENTATION<br>(1) | ANALYSIS<br>DATE | MOISTURE<br>CONTENT,<br>% weight | DENSITY<br>BULK,<br>g/cc | TOTAL<br>POROSITY (2),<br>%Vb | EFFECTIVE<br>POROSITY,<br>%Vb |
| Oeste-Recharge-224 | 1        | 224-224.5     | V                            | 20220329         | 4.3                              | 1.52                     | 40.6                          | 29.8                          |
| Oeste-Recharge-260 | 2        | 260-260.5     | V                            | 20220329         | 2.6                              | 1.69                     | 32.6                          | 24.1                          |
| Oeste-Recharge-501 | 3        | 501-501.5     | V                            | 20220329         | 11.9                             | 1.44                     | 45.1                          | 27.8                          |
| Oeste-Recharge-660 | 4        | 660-660.5     | V                            | 20220329         | 17.4                             | 1.49                     | 38.9                          | 31.5                          |

# **Integrated Geosciences Laboratories, LLC**

### DRY BULK DENSITY OF IN-PLACE SOIL and TOTAL POROSITY (CALCULATED)

(Methodology: ASTM D2937, calculation)

IGS Labs File No: 2203-53

Client: Hargis + Associates, Inc.

Report Date: 4/4/2022

Project Name:

Mojave Water Agency - Oeste

Project No: Site Location: 1311.01 Pinon Hills, California

|                    |          |           |          | TOTAL SAMPLE | MOISTURE | VOLUMETRIC     | DRY BULK | TOTAL (1)   | VOLUME     | VOLUME    |       |            |
|--------------------|----------|-----------|----------|--------------|----------|----------------|----------|-------------|------------|-----------|-------|------------|
| SAMPLE             | IGS Labs | DEPTH,    | ANALYSIS | VOLUME,      | CONTENT, | WATER CONTENT, | DENSITY, | POROSITY,   | OF SOLIDS, | OF VOIDS, | VOID  |            |
| ID.                | ID       | ft.       | DATE     | сс           | % wt     | fraction Vb    | g/cc     | fraction Vb | СС         | сс        | RATIO | SATURATION |
|                    |          |           |          |              |          |                |          |             |            |           |       |            |
| Oeste-Recharge-224 | 1        | 224-224.5 | 20220401 | 61.72        | 4.5      | 0.075          | 1.65     | 0.385       | 38.0       | 23.8      | 0.626 | 0.194      |
| Oeste-Recharge-260 | 2        | 260-260.5 | 20220401 | 61.72        | 3.0      | 0.055          | 1.84     | 0.312       | 42.5       | 19.3      | 0.454 | 0.175      |
| Oeste-Recharge-501 | 3        | 501-501.5 | 20220401 | 61.72        | 12.6     | 0.201          | 1.59     | 0.408       | 36.5       | 25.2      | 0.690 | 0.491      |
| Oeste-Recharge-660 | 4        | 660-660.5 | 20220401 | 61.72        | 21.8     | 0.369          | 1.69     | 0.374       | 38.6       | 23.1      | 0.598 | 0.988      |

(1) Total Porosity by calculated method Specific gravity used for calculation of total porosity is 2.68 to 2.70.

Water = 0.9981 g/cc; Vb = Bulk Volume

# **Integrated Geosciences Laboratories, LLC**

### PHYSICAL PROPERTIES DATA - HYDRAULIC CONDUCTIVITY

(Methodology: API RP 40; EPA 9100)

IGS Labs File No:

2203-53

Hargis + Associates, Inc.

Report Date:

Client:

4/4/2022

**Project Name: Project No:** Site Location:

Mojave Water Agency - Oeste 1311.01

Pinon Hills, California

| SAMPLE              | IGS Labs | DEPTH,    | SAMPLE<br>ORIENTATION | ANALYSIS | CONFINING PRESSURE, | HYDRAULIC<br>GRADIENT, | EFFECTIVE (2,3) PERMEABILITY TO WATER, | HYDRAULIC<br>CONDUCTIVITY (2,3), |
|---------------------|----------|-----------|-----------------------|----------|---------------------|------------------------|----------------------------------------|----------------------------------|
| ID.                 | ID       | ft.       | (1)                   | DATE     | psi                 | (Dimensionless)        | millidarcy                             | cm/s                             |
| Oeste-Recharge-224  | 1        | 224-224.5 | V                     | 20220404 | 25.0                | 65                     | 20.245                                 | 2.05E-05                         |
| ocote neona.gr == : | _        |           | ·                     |          | 20.5                | 65                     | 20.150                                 | 2.04E-05                         |
|                     |          |           |                       |          |                     | 65                     | 20.249                                 | 2.05E-05                         |
|                     |          |           |                       |          |                     | Average:-              | 20.215                                 | 2.05E-05                         |
|                     |          |           |                       |          |                     |                        |                                        |                                  |
| Oeste-Recharge-260  | 2        | 260-260.5 | V                     | 20220404 | 25.0                | 71                     | 15.806                                 | 1.58E-05                         |
|                     |          |           |                       |          |                     | 73                     | 15.448                                 | 1.55E-05                         |
|                     |          |           |                       |          |                     | 72                     | 15.729                                 | 1.58E-05                         |
|                     |          |           |                       |          |                     | Average:-              | 15.661                                 | 1.57E-05                         |
| Oeste-Recharge-501  | 3        | 501-501.5 | V                     | 20220404 | 25.0                | 66                     | 3.881                                  | 3.88E-06                         |
| Oeste-necharge-301  | J        | 301-301.5 | V                     | 20220404 | 23.0                | 66                     | 3.875                                  | 3.87E-06                         |
|                     |          |           |                       |          |                     | 66                     | 3.939                                  | 3.94E-06                         |
|                     |          |           |                       |          |                     | Average:-              | 3.899                                  | 3.90E-06                         |
|                     |          | -         |                       |          |                     | -                      |                                        |                                  |
| Oeste-Recharge-660  | 4        | 660-660.5 | V                     | 20220404 | 25.0                | 14                     | 188.007                                | 1.88E-04                         |
|                     |          |           |                       |          |                     | 14                     | 188.026                                | 1.88E-04                         |
|                     |          |           |                       |          |                     | 15                     | 186.185                                | 1.86E-04                         |
|                     |          |           |                       |          |                     |                        |                                        |                                  |

Water = filtered Laboratory Fresh (tap) or Site water.

<sup>(1)</sup> Sample Orientation: H = horizontal; V = vertical; R = remold

<sup>(2)</sup> Effective (Native) = With as-received pore fluids in place.

<sup>(3)</sup> Permeability to water and hydraulic conductivity measured at saturated conditions.

# SAMPLE PROPERTIES - AIR/WATER CAPILLARY PRESSURE

METHODS: API RP40/ASTM D2216

IGS Labs File No: 2203-53

Project Name:

Mojave Water Agency - Oeste

Client: Hargis + Associates, Inc.

Project Number:

1311.01

04/04/22

Site Location:

Pinon Hills, California

**API RP 40 /** 

|                    |          |           | METHODS:    | <b>ASTM D2216</b> | API I     | RP 40  | API I   | RP 40      | API RP 40        |
|--------------------|----------|-----------|-------------|-------------------|-----------|--------|---------|------------|------------------|
|                    |          |           | SAMPLE      | MOISTURE          | DEN       | SITY   | POROSIT | Y, %Vb (2) | TOTAL PORE FLUID |
| SAMPLE             | IGS Labs | DEPTH,    | ORIENTATION | CONTENT,          | DRY BULK, | GRAIN, |         | AIR        | SATURATIONS (3), |
| ID                 | ID       | (feet)    | (1)         | (% weight)        | (g/cc)    | (g/cc) | TOTAL   | FILLED     | (% PV)           |
|                    |          |           |             |                   |           |        |         |            |                  |
| Oeste-Recharge-260 | 2        | 260-260.5 | V           | 0.6               | 1.72      | 2.73   | 37.0    | 29.3       | 22.9             |
| Oeste-Recharge-501 | 3        | 501-501.5 | V           | 11.6              | 1.44      | 2.70   | 46.7    | 26.0       | 46.2             |

### NOTES:

Report Date:

- (1) Sample Orientation: H = horizontal; V = vertical; R = remold
- (2) Total Porosity = all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids.
- (3) Fluid density used to calculate pore fluid saturations: Water = 0.9996 g/cc.
- Vb = Bulk Volume, cc; Pv = Pore Volume, cc; ND = Not Detected

# PERMEABILITY DATA - AIR/WATER CAPILLARY PRESSURE

METHODS: API RP40/EPA 9100

IGS Labs File No: 2203-53 Project Name: Mojave Water Agency - Oeste

Client: Hargis + Associates, Inc. Project Number: 1311.01

Report Date: 04/04/22 Site Location: Pinon Hills, California

|                    |          |                  |                              | 25 PSI CONFINING STRESS                      |                                                   |                                        |  |  |
|--------------------|----------|------------------|------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------|--|--|
| SAMPLE<br>ID       | IGS Labs | DEPTH,<br>(feet) | SAMPLE<br>ORIENTATION<br>(1) | SPECIFIC PERMEABILITY TO AIR, millidarcy (2) | EFFECTIVE PERMEABILITY TO WATER, millidarcy (3,4) | HYDRAULIC<br>CONDUCTIVITY,<br>cm/s (4) |  |  |
|                    | _        |                  |                              |                                              |                                                   |                                        |  |  |
| Oeste-Recharge-260 | 2        | 260-260.5        | V                            | 333                                          | 0.338                                             | 3.35E-07                               |  |  |
| Oeste-Recharge-501 | 3        | 501-501.5        | V                            | 532                                          | 0.226                                             | 2.23E-07                               |  |  |

### **NOTES:**

- (1) Sample Orientation: H = horizontal; V = vertical; R = remold
- (2) Specific = No pore fluids in place.
- (3) Effective (Native) = With as-received pore fluids in place.
- (4) Permeability to water and hydraulic conductivity measured at saturated conditions.
- Air = Nitrogen gas, Water = filtered Laboratory Fresh (tap) or Site water.

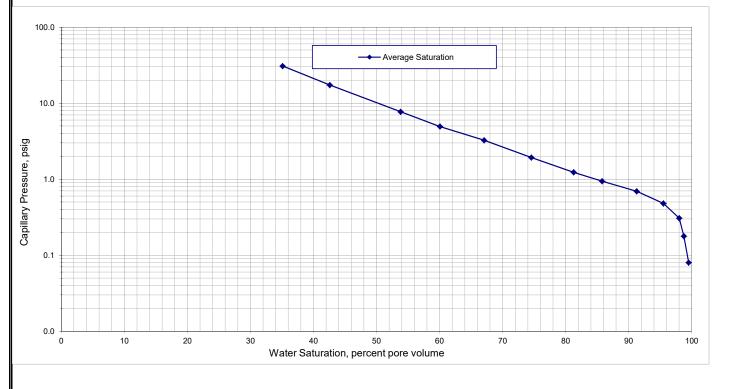
### AIR/WATER CAPILLARY PRESSURE TABULAR DATA

ASTM D6836; Method E (Centrifugal Method: air displacing water)

**Project Name:** 

IGS Labs File No: 2203-53 Client:

Report Date:


Hargis + Associates, Inc.

**Project No:** 04/04/22

Mojave Water Agency - Oeste

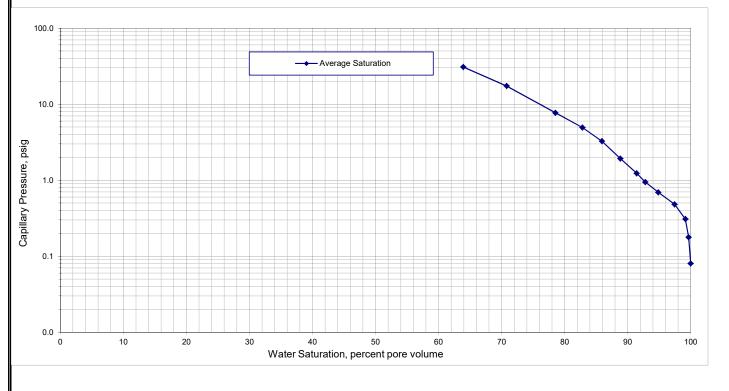
| • | 13 | 1 | 1 | .0 | 1 |
|---|----|---|---|----|---|
|   |    |   |   |    |   |

|          |             |              |                    | Sample ID    |  |  |  |
|----------|-------------|--------------|--------------------|--------------|--|--|--|
| Capillar | y Pressure  | Height Above | Oeste-Rech         | arge-260     |  |  |  |
|          |             | Water Table, | Average Saturation | Moisture,    |  |  |  |
| psi      | cm water ft |              | % pore volume      | % dry weight |  |  |  |
|          |             |              |                    |              |  |  |  |
| 0.000    | 0.00        | 0.000        | 100.0              | 14.6         |  |  |  |
| 0.080    | 5.62        | 0.185        | 99.5               | 14.5         |  |  |  |
| 0.178    | 12.5        | 0.411        | 98.8               | 14.4         |  |  |  |
| 0.308    | 21.6        | 0.712        | 98.0               | 14.3         |  |  |  |
| 0.481    | 33.8        | 1.11         | 95.5               | 14.0         |  |  |  |
| 0.692    | 48.7        | 1.60         | 91.3               | 13.3         |  |  |  |
| 0.942    | 66.2        | 2.18         | 85.8               | 12.5         |  |  |  |
| 1.23     | 86.5        | 2.85         | 81.3               | 11.9         |  |  |  |
| 1.92     | 135         | 4.45         | 74.5               | 10.9         |  |  |  |
| 3.25     | 228         | 7.52         | 67.1               | 9.8          |  |  |  |
| 4.92     | 346         | 11.4         | 60.1               | 8.8          |  |  |  |
| 7.69     | 541         | 17.8         | 53.8               | 7.9          |  |  |  |
| 17.3     | 1216        | 40.0         | 42.6               | 6.2          |  |  |  |
| 30.8     | 2163        | 71.2         | 35.1               | 5.1          |  |  |  |
|          |             |              |                    |              |  |  |  |



### AIR/WATER CAPILLARY PRESSURE TABULAR DATA

ASTM D6836; Method E (Centrifugal Method: air displacing water)


IGS Labs File No: 2203-53 Client: Hargis + A

Hargis + Associates, Inc.

Report Date: 04/04/22

Project Name: Mojave Water Agency - Oeste Project No: 1311.01

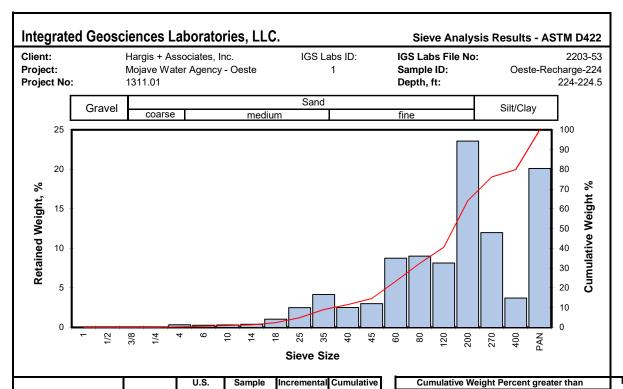
| •        |            | Sample ID    |                    |              |  |
|----------|------------|--------------|--------------------|--------------|--|
| Canillan | y Pressure | Height Above | Oeste-Rech         | arge-501     |  |
| Capillar | y Pressure | Water Table, | Average Saturation | Moisture,    |  |
| psi      | cm water   | ft           | % pore volume      | % dry weight |  |
|          |            |              |                    |              |  |
| 0.000    | 0.00       | 0.000        | 100.0              | 23.0         |  |
| 0.080    | 5.64       | 0.186        | 100.0              | 23.0         |  |
| 0.178    | 12.5       | 0.412        | 99.7               | 22.9         |  |
| 0.308    | 21.7       | 0.714        | 99.1               | 22.8         |  |
| 0.482    | 33.9       | 1.12         | 97.4               | 22.4         |  |
| 0.694    | 48.8       | 1.61         | 94.8               | 21.8         |  |
| 0.944    | 66.4       | 2.19         | 92.8               | 21.3         |  |
| 1.23     | 86.7       | 2.85         | 91.4               | 21.0         |  |
| 1.93     | 136        | 4.46         | 88.8               | 20.4         |  |
| 3.26     | 229        | 7.54         | 85.9               | 19.7         |  |
| 4.93     | 347        | 11.4         | 82.8               | 19.0         |  |
| 7.71     | 542        | 17.8         | 78.5               | 18.0         |  |
| 17.3     | 1220       | 40.1         | 70.8               | 16.3         |  |
| 30.8     | 2168       | 71.4         | 63.9               | 14.7         |  |
|          |            |              |                    |              |  |



#### **PARTICLE SIZE SUMMARY**

(METHODOLOGY: ASTM D422)

PROJECT NAME: Mojave Water Agency - Oeste


Hargis + Associates, Inc. IGS Labs File No: 2203-53

PROJECT NO: 1311.01

Report Date: 4/4/2022

SITE LOCATION: Pinon Hills, California

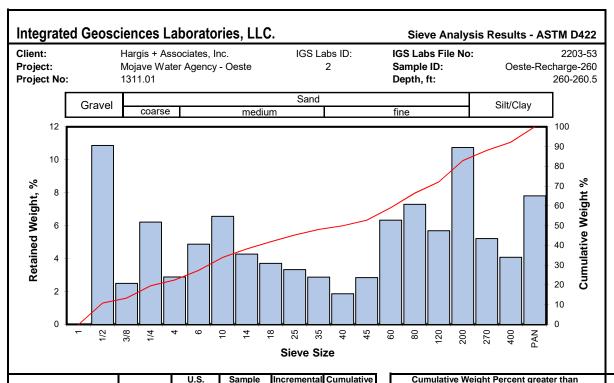
|                    |          |            | Mean Grain Size<br>Description | Median      |        |        | Particle Size | e Distribution | ı, wt. percent | :     |           |
|--------------------|----------|------------|--------------------------------|-------------|--------|--------|---------------|----------------|----------------|-------|-----------|
|                    | IGS Labs |            | USCS/ASTM                      | Grain Size, | Gravel |        |               | Sand Size      |                |       | Silt/Clay |
| Sample ID          | ID       | Depth, ft. | (1)                            | mm          |        | Coarse | Medium        | Fine           | Silt           | Clay  |           |
|                    | _        |            |                                |             | 1      |        |               |                | •              | •     | 1         |
| Oeste-Recharge-224 | 1        | 224-224.5  | Fine sand                      | 0.102       | 0.35   | 0.60   | 10.66         | 52.55          | 15.72          | 20.11 | 35.84     |
| Oeste-Recharge-260 | 2        | 260-260.5  | Fine sand                      | 0.420       | 22.47  | 11.44  | 16.05         | 32.91          | 9.31           | 7.82  | 17.12     |
| Oeste-Recharge-501 | 3        | 501-501.5  | Fine sand                      | 0.106       | 0.00   | 0.17   | 9.59          | 51.47          | 22.01          | 16.75 | 38.77     |
| Oeste-Recharge-660 | 4        | 660-660.5  | Fine sand                      | 0.122       | 0.56   | 1.23   | 11.85         | 53.94          | 11.21          | 21.21 | 32.42     |



| Opening |             | Phi of | Sieve | Weight | Weight, | Weight, |
|---------|-------------|--------|-------|--------|---------|---------|
| Inches  | Millimeters | Screen | No.   | grams  | percent | percent |
| 0.9844  | 25.002      | -4.64  | 1     | 0.00   | 0.00    | 0.00    |
| 0.4922  | 12.501      | -3.64  | 1/2   | 0.00   | 0.00    | 0.00    |
| 0.3740  | 9.500       | -3.25  | 3/8   | 0.00   | 0.00    | 0.00    |
| 0.2500  | 6.351       | -2.67  | 1/4   | 0.00   | 0.00    | 0.00    |
| 0.1873  | 4.757       | -2.25  | 4     | 0.43   | 0.35    | 0.35    |
| 0.1324  | 3.364       | -1.75  | 6     | 0.34   | 0.28    | 0.63    |
| 0.0787  | 2.000       | -1.00  | 10    | 0.39   | 0.32    | 0.95    |
| 0.0557  | 1.414       | -0.50  | 14    | 0.48   | 0.39    | 1.35    |
| 0.0394  | 1.000       | 0.00   | 18    | 1.28   | 1.05    | 2.40    |
| 0.0278  | 0.707       | 0.50   | 25    | 3.05   | 2.51    | 4.90    |
| 0.0197  | 0.500       | 1.00   | 35    | 5.08   | 4.17    | 9.08    |
| 0.0166  | 0.420       | 1.25   | 40    | 3.09   | 2.54    | 11.61   |
| 0.0139  | 0.354       | 1.50   | 45    | 3.68   | 3.02    | 14.64   |
| 0.0098  | 0.250       | 2.00   | 60    | 10.66  | 8.76    | 23.39   |
| 0.0070  | 0.177       | 2.50   | 80    | 11.00  | 9.03    | 32.43   |
| 0.0049  | 0.125       | 3.00   | 120   | 9.92   | 8.15    | 40.57   |
| 0.0029  | 0.074       | 3.75   | 200   | 28.72  | 23.59   | 64.16   |
| 0.0021  | 0.053       | 4.25   | 270   | 14.61  | 12.00   | 76.16   |
| 0.0015  | 0.037       | 4.75   | 400   | 4.53   | 3.72    | 79.89   |
|         |             |        | PAN   | 24.49  | 20.11   | 100.00  |
|         |             |        |       |        |         |         |

| Cumulative Weight Percent greater than |        |        | Passing     | Cumulative Weight |           |
|----------------------------------------|--------|--------|-------------|-------------------|-----------|
| Weight                                 | Phi    | Part   | icle Size   | (grams)           | Passing   |
| percent                                | Value  | Inches | Millimeters |                   | (percent) |
| 5                                      | 0.51   | 0.0276 | 0.701       | 121.75            | 100.00    |
| 10                                     | 1.09   | 0.0185 | 0.469       | 121.75            | 100.00    |
| 16                                     | 1.58   | 0.0132 | 0.335       | 121.75            | 100.00    |
| 25                                     | 2.09   | 0.0093 | 0.235       | 121.75            | 100.00    |
| 40                                     | 2.96   | 0.0050 | 0.128       | 121.32            | 99.65     |
| 50                                     | 3.30   | 0.0040 | 0.102       | 120.98            | 99.37     |
| 60                                     | 3.62   | 0.0032 | 0.081       | 120.59            | 99.05     |
| 75                                     | 4.20   | 0.0021 | 0.054       | 120.11            | 98.65     |
| 84                                     | 3.78   | 0.0029 | 0.073       | 118.83            | 97.60     |
| 90                                     | 2.36   | 0.0077 | 0.195       | 115.78            | 95.10     |
| 95                                     | 1.18   | 0.0174 | 0.441       | 110.70            | 90.92     |
|                                        |        |        |             | 107.61            | 88.39     |
| Measure                                | Trask  | Inman  | Folk-Ward   | 103.93            | 85.36     |
| Median, phi                            | 3.30   | 3.30   | 3.30        | 93.27             | 76.61     |
| Median, in.                            | 0.0040 | 0.0040 | 0.0040      | 82.27             | 67.57     |
| Median, mm                             | 0.102  | 0.102  | 0.102       | 72.35             | 59.43     |
|                                        |        |        |             | 43.63             | 35.84     |
| Mean, phi                              | 2.79   | 2.68   | 2.89        | 29.02             | 23.84     |
| Mean, in.                              | 0.0057 | 0.0062 | 0.0053      | 24.49             | 20.11     |
| Mean, mm                               | 0.145  | 0.156  | 0.135       | 0.00              | 0.00      |
|                                        |        |        |             |                   |           |

| ivicari, iri.                                                                                              | 0.0001           | 0.0002      | 0.0000                     |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------|-------------|----------------------------|--|--|--|--|--|
| Mean, mm                                                                                                   | 0.145            | 0.156       | 0.135                      |  |  |  |  |  |
| C a mtim as                                                                                                | 2.000            | 4 400       | 0.054                      |  |  |  |  |  |
| Sorting                                                                                                    | 2.080            | 1.100       | 0.651                      |  |  |  |  |  |
| Skewness                                                                                                   | 1.113            | -0.565      | -3.949                     |  |  |  |  |  |
| Kurtosis                                                                                                   | 0.329            | -0.696      | 0.130                      |  |  |  |  |  |
| Grain Size D                                                                                               | escription       |             | Fine sand                  |  |  |  |  |  |
| (ASTM-US                                                                                                   | CS Scale)        | (based on M | (based on Mean from Trask) |  |  |  |  |  |
| Coefficient of Curvature, $Cc = (D_{30})^2/(D_{60} \times D_{10})$<br>$D_{30} = 0.199$<br>Cc = 1.039982045 |                  |             |                            |  |  |  |  |  |
| Coefficient of Uniformity, $Cu = D_{60} / D_{10}$                                                          |                  |             |                            |  |  |  |  |  |
|                                                                                                            | $D_{60} = 0.081$ |             |                            |  |  |  |  |  |
| $D_{40} = 0.469$                                                                                           |                  |             |                            |  |  |  |  |  |


Cu = 0.173549419

| Description | Retained<br>on Sieve # | Weight<br>Percent | Passing<br>through | Cumlative Weights<br>Percent Passing |
|-------------|------------------------|-------------------|--------------------|--------------------------------------|
| Gravel      | 4                      | 0.35              | 1                  | 100.00                               |
| Coarse Sand | 10                     | 0.60              | 4                  | 99.65                                |
| Medium Sand | 40                     | 10.66             | 10                 | 99.05                                |
| Fine Sand   | 200                    | 52.55             | 40                 | 88.39                                |
| Silt        | <200                   | 15.72             | 200                | 35.84                                |
| Clay        | Pan                    | 20.11             |                    |                                      |
|             | Total                  | 100               | Total              |                                      |

© IGS Laboratories, LLC.

TOTALS

100.00 121.75 100.00 Phone: (713) 316-1800

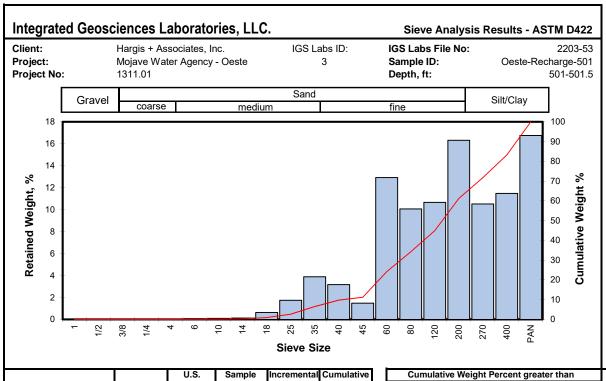


|        |             |        | 0.3.  | Sample | incremental | Cumulative |
|--------|-------------|--------|-------|--------|-------------|------------|
| Ope    | ening       | Phi of | Sieve | Weight | Weight,     | Weight,    |
| Inches | Millimeters | Screen | No.   | grams  | percent     | percent    |
| 0.9844 | 25.002      | -4.64  | 1     | 0.00   | 0.00        | 0.00       |
| 0.4922 | 12.501      | -3.64  | 1/2   | 25.40  | 10.87       | 10.87      |
| 0.3740 | 9.500       | -3.25  | 3/8   | 5.84   | 2.50        | 13.37      |
| 0.2500 | 6.351       | -2.67  | 1/4   | 14.52  | 6.22        | 19.59      |
| 0.1873 | 4.757       | -2.25  | 4     | 6.74   | 2.89        | 22.47      |
| 0.1324 | 3.364       | -1.75  | 6     | 11.39  | 4.88        | 27.35      |
| 0.0787 | 2.000       | -1.00  | 10    | 15.34  | 6.57        | 33.91      |
| 0.0557 | 1.414       | -0.50  | 14    | 9.99   | 4.28        | 38.19      |
| 0.0394 | 1.000       | 0.00   | 18    | 8.66   | 3.71        | 41.90      |
| 0.0278 | 0.707       | 0.50   | 25    | 7.78   | 3.33        | 45.23      |
| 0.0197 | 0.500       | 1.00   | 35    | 6.72   | 2.88        | 48.10      |
| 0.0166 | 0.420       | 1.25   | 40    | 4.35   | 1.86        | 49.97      |
| 0.0139 | 0.354       | 1.50   | 45    | 6.64   | 2.84        | 52.81      |
| 0.0098 | 0.250       | 2.00   | 60    | 14.80  | 6.34        | 59.14      |
| 0.0070 | 0.177       | 2.50   | 80    | 17.04  | 7.29        | 66.44      |
| 0.0049 | 0.125       | 3.00   | 120   | 13.30  | 5.69        | 72.13      |
| 0.0029 | 0.074       | 3.75   | 200   | 25.11  | 10.75       | 82.88      |
| 0.0021 | 0.053       | 4.25   | 270   | 12.20  | 5.22        | 88.10      |
| 0.0015 | 0.037       | 4.75   | 400   | 9.54   | 4.08        | 92.18      |
|        |             |        | PAN   | 18.26  | 7.82        | 100.00     |
|        |             |        |       |        |             |            |

| Cumulative Weight Percent greater than |        |        | Passing     | Cumulative Weight |           |
|----------------------------------------|--------|--------|-------------|-------------------|-----------|
| Weight                                 | Phi    | Parti  | icle Size   | (grams)           | Passing   |
| percent                                | Value  | Inches | Millimeters |                   | (percent) |
| 5                                      | -4.18  | 0.7157 | 18.178      | 233.62            | 100.00    |
| 10                                     | -3.72  | 0.5203 | 13.216      | 208.22            | 89.13     |
| 16                                     | -3.00  | 0.3155 | 8.013       | 202.38            | 86.63     |
| 25                                     | -1.99  | 0.1565 | 3.975       | 187.86            | 80.41     |
| 40                                     | -0.26  | 0.0470 | 1.194       | 181.12            | 77.53     |
| 50                                     | 1.25   | 0.0165 | 0.420       | 169.73            | 72.65     |
| 60                                     | 2.06   | 0.0094 | 0.240       | 154.39            | 66.09     |
| 75                                     | 3.20   | 0.0043 | 0.109       | 144.40            | 61.81     |
| 84                                     | 3.86   | 0.0027 | 0.069       | 135.74            | 58.10     |
| 90                                     | 4.48   | 0.0018 | 0.045       | 127.96            | 54.77     |
| 95                                     | 3.04   | 0.0048 | 0.122       | 121.24            | 51.90     |
|                                        |        |        |             | 116.89            | 50.03     |
| Measure                                | Trask  | Inman  | Folk-Ward   | 110.25            | 47.19     |
| Median, phi                            | 1.25   | 1.25   | 1.25        | 95.45             | 40.86     |
| Median, in.                            | 0.0165 | 0.0165 | 0.0165      | 78.41             | 33.56     |
| Median, mm                             | 0.420  | 0.420  | 0.420       | 65.11             | 27.87     |
|                                        |        |        |             | 40.00             | 17.12     |
| Mean, phi                              | -1.03  | 0.43   | 0.70        | 27.80             | 11.90     |
| Mean, in.                              | 0.0804 | 0.0293 | 0.0242      | 18.26             | 7.82      |
| Mean, mm                               | 2.042  | 0.744  | 0.614       | 0.00              | 0.00      |

| wicaian, in.   | 0.0100       | 0.0100                   | 0.0100                 |
|----------------|--------------|--------------------------|------------------------|
| Median, mm     | 0.420        | 0.420                    | 0.420                  |
|                |              |                          |                        |
| Mean, phi      | -1.03        | 0.43                     | 0.70                   |
| Mean, in.      | 0.0804       | 0.0293                   | 0.0242                 |
| Mean, mm       | 2.042        | 0.744                    | 0.614                  |
|                |              |                          |                        |
| Sorting        | 6.044        | 3.430                    | 2.809                  |
| Skewness       | 1.567        | -0.241                   | -0.373                 |
| Kurtosis       | 0.147        | 0.053                    | 0.570                  |
| Grain Size De  | escription   |                          | Fine sand              |
| (ASTM-USC      | CS Scale)    | (based on Me             | ean from Trask)        |
| -              |              | _                        |                        |
| Coefficient of | Curvature, C | $c = (D_{30})^2/(D_6)^2$ | so x D <sub>10</sub> ) |

 $D_{30} = 3.049$  $\label{eq:cc} \begin{array}{c} \text{Cc} = \ 2.929860433 \\ \text{Coefficient of Uniformity, Cu} = D_{60} \ / \ D_{10} \end{array}$  $D_{60} = 0.240$   $D_{10} = 13.216$ 


Cu = 0.018161405

| Description | Retained on Sieve # | Weight<br>Percent | Passing through | Cumlative Weights<br>Percent Passing |
|-------------|---------------------|-------------------|-----------------|--------------------------------------|
| Gravel      | 4                   | 22.47             | 1               | 100.00                               |
| Coarse Sand | 10                  | 11.44             | 4               | 77.53                                |
| Medium Sand | 40                  | 16.05             | 10              | 66.09                                |
| Fine Sand   | 200                 | 32.91             | 40              | 50.03                                |
| Silt        | <200                | 9.31              | 200             | 17.12                                |
| Clay        | Pan                 | 7.82              |                 |                                      |
|             | Total               | 100               | Total           |                                      |

© IGS Laboratories, LLC.

TOTALS

100.00 233.62 100.00 Phone: (713) 316-1800



| Op     | ening       | Phi of | Sieve | Weight | Weight, | Weight, |
|--------|-------------|--------|-------|--------|---------|---------|
| Inches | Millimeters | Screen | No.   | grams  | percent | percent |
| 0.9844 | 25.002      | -4.64  | 1     | 0.00   | 0.00    | 0.00    |
| 0.4922 | 12.501      | -3.64  | 1/2   | 0.00   | 0.00    | 0.00    |
| 0.3740 | 9.500       | -3.25  | 3/8   | 0.00   | 0.00    | 0.00    |
| 0.2500 | 6.351       | -2.67  | 1/4   | 0.00   | 0.00    | 0.00    |
| 0.1873 | 4.757       | -2.25  | 4     | 0.00   | 0.00    | 0.00    |
| 0.1324 | 3.364       | -1.75  | 6     | 0.11   | 0.07    | 0.07    |
| 0.0787 | 2.000       | -1.00  | 10    | 0.17   | 0.10    | 0.17    |
| 0.0557 | 1.414       | -0.50  | 14    | 0.20   | 0.12    | 0.30    |
| 0.0394 | 1.000       | 0.00   | 18    | 1.03   | 0.63    | 0.93    |
| 0.0278 | 0.707       | 0.50   | 25    | 2.85   | 1.75    | 2.68    |
| 0.0197 | 0.500       | 1.00   | 35    | 6.33   | 3.90    | 6.58    |
| 0.0166 | 0.420       | 1.25   | 40    | 5.16   | 3.18    | 9.76    |
| 0.0139 | 0.354       | 1.50   | 45    | 2.41   | 1.48    | 11.24   |
| 0.0098 | 0.250       | 2.00   | 60    | 21.00  | 12.93   | 24.17   |
| 0.0070 | 0.177       | 2.50   | 80    | 16.36  | 10.07   | 34.25   |
| 0.0049 | 0.125       | 3.00   | 120   | 17.32  | 10.66   | 44.91   |
| 0.0029 | 0.074       | 3.75   | 200   | 26.51  | 16.32   | 61.23   |
| 0.0021 | 0.053       | 4.25   | 270   | 17.10  | 10.53   | 71.76   |
| 0.0015 | 0.037       | 4.75   | 400   | 18.65  | 11.48   | 83.25   |
|        |             |        | PAN   | 27.21  | 16.75   | 100.00  |

| Cumula      | tive Weight | Percent grea | ater than   | Passing | Cumulative Weight |
|-------------|-------------|--------------|-------------|---------|-------------------|
| Weight      | Phi         | Parti        | cle Size    | (grams) | Passing           |
| percent     | Value       | Inches       | Millimeters |         | (percent)         |
| 5           | 0.80        | 0.0227       | 0.576       | 162.41  | 100.00            |
| 10          | 1.29        | 0.0161       | 0.409       | 162.41  | 100.00            |
| 16          | 1.68        | 0.0123       | 0.311       | 162.41  | 100.00            |
| 25          | 2.04        | 0.0096       | 0.243       | 162.41  | 100.00            |
| 40          | 2.77        | 0.0058       | 0.147       | 162.41  | 100.00            |
| 50          | 3.23        | 0.0042       | 0.106       | 162.30  | 99.93             |
| 60          | 3.69        | 0.0030       | 0.077       | 162.13  | 99.83             |
| 75          | 4.39        | 0.0019       | 0.048       | 161.93  | 99.70             |
| 84          | 4.54        | 0.0017       | 0.043       | 160.90  | 99.07             |
| 90          | 2.84        | 0.0055       | 0.140       | 158.05  | 97.32             |
| 95          | 1.42        | 0.0147       | 0.374       | 151.72  | 93.42             |
|             |             |              |             | 146.56  | 90.24             |
| Measure     | Trask       | Inman        | Folk-Ward   | 144.15  | 88.76             |
| Median, phi | 3.23        | 3.23         | 3.23        | 123.15  | 75.83             |
| Median, in. | 0.0042      | 0.0042       | 0.0042      | 106.79  | 65.75             |
| Median, mm  | 0.106       | 0.106        | 0.106       | 89.47   | 55.09             |
|             |             |              |             | 62.96   | 38.77             |
| Mean, phi   | 2.78        | 3.11         | 3.15        | 45.86   | 28.24             |
| Mean, in.   | 0.0057      | 0.0046       | 0.0044      | 27.21   | 16.75             |

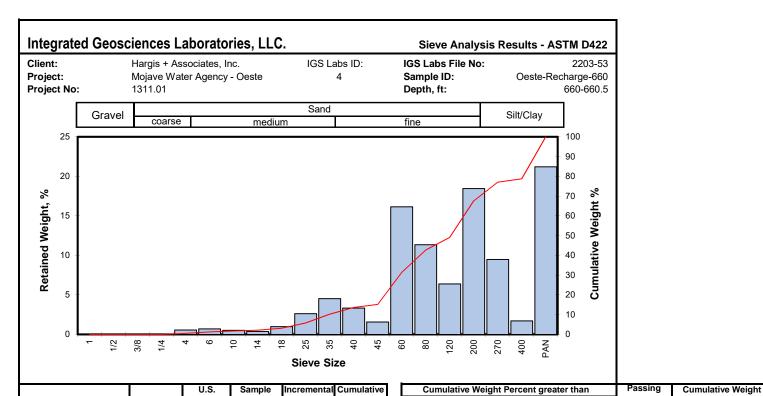
0.00

| Median, mm         0.106         0.106         0.106           Mean, phi         2.78         3.11         3.15           Mean, in.         0.0057         0.0046         0.0044           Mean, mm         0.145         0.116         0.113           Sorting         2.258         1.426         0.807           Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         (based on Mean from Trask)    Coefficient of Curvature, Cc = (D <sub>30</sub> ) <sup>2</sup> /(D <sub>60</sub> x D <sub>10</sub> ) | Median, in.    | 0.0042       | 0.0042                   | 0.0042                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------|------------------------|
| Mean, in.         0.0057         0.0046         0.0044           Mean, mm         0.145         0.116         0.113           Sorting         2.258         1.426         0.807           Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         (based on Mean from Trask)                                                                                                                                                                                                                                   | Median, mm     | 0.106        | 0.106                    | 0.106                  |
| Mean, in.         0.0057         0.0046         0.0044           Mean, mm         0.145         0.116         0.113           Sorting         2.258         1.426         0.807           Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         (based on Mean from Trask)                                                                                                                                                                                                                                   |                |              |                          |                        |
| Mean, mm         0.145         0.116         0.113           Sorting         2.258         1.426         0.807           Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         (based on Mean from Trask)                                                                                                                                                                                                                                                                                                    | Mean, phi      | 2.78         | 3.11                     | 3.15                   |
| Sorting   2.258   1.426   0.807     Skewness   1.012   -0.087   -3.470     Kurtosis   0.364   -0.782   0.108     Grain Size Description (ASTM-USCS Scale)   (based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mean, in.      | 0.0057       | 0.0046                   | 0.0044                 |
| Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         Fine sand (based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean, mm       | 0.145        | 0.116                    | 0.113                  |
| Skewness         1.012         -0.087         -3.470           Kurtosis         0.364         -0.782         0.108           Grain Size Description (ASTM-USCS Scale)         Fine sand (based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                   |                |              |                          |                        |
| Kurtosis         0.364         -0.782         0.108           Grain Size Description<br>(ASTM-USCS Scale)         Fine sand<br>(based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sorting        | 2.258        | 1.426                    | 0.807                  |
| Grain Size Description Fine sand (ASTM-USCS Scale) (based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Skewness       | 1.012        | -0.087                   | -3.470                 |
| (ASTM-USCS Scale) (based on Mean from Trask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kurtosis       | 0.364        | -0.782                   | 0.108                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Grain Size Do  | escription   |                          | Fine sand              |
| Coefficient of Curvature $Cc = (D_{20})^2/(D_{60} \times D_{40})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (ASTM-US       | CS Scale)    | (based on Me             | ean from Trask)        |
| Coefficient of Curvature, $C_C = (D_{20})^2/(D_{60} \times D_{40})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |              |                          |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coefficient of | Curvature, C | $c = (D_{30})^2/(D_6)^2$ | so x D <sub>10</sub> ) |

| Coefficient of Curvature, CC – $(D_{30})$ / $(D_{60} \times D_{10})$ |
|----------------------------------------------------------------------|
| $D_{30} = 0.211$                                                     |
| Cc = 1.407522787                                                     |
| Coefficient of Uniformity, Cu = D <sub>60</sub> / D <sub>10</sub>    |
| $D_{co} = 0.077$                                                     |

 $D_{60} = 0.077$  $D_{10} = 0.409$ Cu = 0.18910452

| Retained   | Weight                              | Passing                                                                                                                                            | Cumlative Weights                                                                                                                                                                                            |
|------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on Sieve # | Percent                             | through                                                                                                                                            | Percent Passing                                                                                                                                                                                              |
| 4          | 0.00                                | 1                                                                                                                                                  | 100.00                                                                                                                                                                                                       |
| 10         | 0.17                                | 4                                                                                                                                                  | 100.00                                                                                                                                                                                                       |
| 40         | 9.59                                | 10                                                                                                                                                 | 99.83                                                                                                                                                                                                        |
| 200        | 51.47                               | 40                                                                                                                                                 | 90.24                                                                                                                                                                                                        |
| <200       | 22.01                               | 200                                                                                                                                                | 38.77                                                                                                                                                                                                        |
| Pan        | 16.75                               |                                                                                                                                                    |                                                                                                                                                                                                              |
| Total      | 100                                 | Total                                                                                                                                              |                                                                                                                                                                                                              |
|            | on Sieve #  4  10  40  200 <200 Pan | on Sieve #         Percent           4         0.00           10         0.17           40         9.59           200         51.47           <200 | on Sieve #         Percent         through           4         0.00         1           10         0.17         4           40         9.59         10           200         51.47         40           <200 |


TOTALS © IGS Laboratories, LLC.

100.00 Phone: (713) 316-1800

162.41

100.00

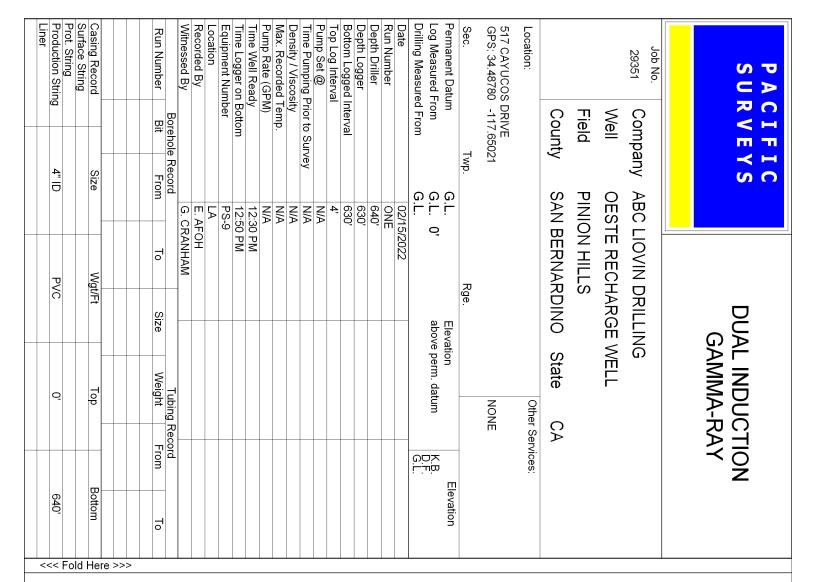
0.00



| Ope    | ening       | Phi of | Sieve | Weight | Weight, | Weight, |
|--------|-------------|--------|-------|--------|---------|---------|
| Inches | Millimeters | Screen | No.   | grams  | percent | percent |
| 0.9844 | 25.002      | -4.64  | 1     | 0.00   | 0.00    | 0.00    |
| 0.4922 | 12.501      | -3.64  | 1/2   | 0.00   | 0.00    | 0.00    |
| 0.3740 | 9.500       | -3.25  | 3/8   | 0.00   | 0.00    | 0.00    |
| 0.2500 | 6.351       | -2.67  | 1/4   | 0.00   | 0.00    | 0.00    |
| 0.1873 | 4.757       | -2.25  | 4     | 0.68   | 0.56    | 0.56    |
| 0.1324 | 3.364       | -1.75  | 6     | 0.86   | 0.71    | 1.27    |
| 0.0787 | 2.000       | -1.00  | 10    | 0.63   | 0.52    | 1.79    |
| 0.0557 | 1.414       | -0.50  | 14    | 0.47   | 0.39    | 2.18    |
| 0.0394 | 1.000       | 0.00   | 18    | 1.20   | 0.99    | 3.17    |
| 0.0278 | 0.707       | 0.50   | 25    | 3.18   | 2.62    | 5.79    |
| 0.0197 | 0.500       | 1.00   | 35    | 5.49   | 4.53    | 10.31   |
| 0.0166 | 0.420       | 1.25   | 40    | 4.04   | 3.33    | 13.64   |
| 0.0139 | 0.354       | 1.50   | 45    | 1.91   | 1.57    | 15.22   |
| 0.0098 | 0.250       | 2.00   | 60    | 19.60  | 16.16   | 31.37   |
| 0.0070 | 0.177       | 2.50   | 80    | 13.77  | 11.35   | 42.73   |
| 0.0049 | 0.125       | 3.00   | 120   | 7.75   | 6.39    | 49.11   |
| 0.0029 | 0.074       | 3.75   | 200   | 22.40  | 18.47   | 67.58   |
| 0.0021 | 0.053       | 4.25   | 270   | 11.52  | 9.50    | 77.08   |
| 0.0015 | 0.037       | 4.75   | 400   | 2.08   | 1.71    | 78.79   |
|        |             |        | PAN   | 25.73  | 21.21   | 100.00  |
|        |             |        |       |        |         |         |

| • • • • • • • • • • • • • • • • • • • • | are rreignici | 0.00g. g. 0. | ator triuri      | Ū       | Oumaidance rroigin |
|-----------------------------------------|---------------|--------------|------------------|---------|--------------------|
| Weight                                  | Phi           | Parti        | cle Size         | (grams) | Passing            |
| percent                                 | Value         | Inches       | Millimeters      |         | (percent)          |
| 5                                       | 0.35          | 0.0309       | 0.785            | 121.31  | 100.00             |
| 10                                      | 0.97          | 0.0202       | 0.512            | 121.31  | 100.00             |
| 16                                      | 1.52          | 0.0137       | 0.348            | 121.31  | 100.00             |
| 25                                      | 1.80          | 0.0113       | 0.287            | 121.31  | 100.00             |
| 40                                      | 2.38          | 0.0076       | 0.192            | 120.63  | 99.44              |
| 50                                      | 3.04          | 0.0048       | 0.122            | 119.77  | 98.73              |
| 60                                      | 3.44          | 0.0036       | 0.092            | 119.14  | 98.21              |
| 75                                      | 4.14          | 0.0022       | 0.057            | 118.67  | 97.82              |
| 84                                      | 3.58          | 0.0033       | 0.083            | 117.47  | 96.83              |
| 90                                      | 2.24          | 0.0083       | 0.212            | 114.29  | 94.21              |
| 95                                      | 1.12          | 0.0181       | 0.460            | 108.80  | 89.69              |
|                                         |               |              |                  | 104.76  | 86.36              |
| Measure                                 | Trask         | Inman        | Folk-Ward        | 102.85  | 84.78              |
| Median, phi                             | 3.04          | 3.04         | 3.04             | 83.25   | 68.63              |
| Median, in.                             | 0.0048        | 0.0048       | 0.0048           | 69.48   | 57.27              |
| Median, mm                              | 0.122         | 0.122        | 0.122            | 61.73   | 50.89              |
|                                         |               |              |                  | 39.33   | 32.42              |
| Mean, phi                               | 2.54          | 2.55         | 2.71             | 27.81   | 22.92              |
| Mean, in.                               | 0.0068        | 0.0067       | 0.0060           | 25.73   | 21.21              |
| Mean, mm                                | 0.172         | 0.170        | 0.152            | 0.00    | 0.00               |
| Sorting                                 | 2.249         | 1.029        | 0.631            |         |                    |
| Skewness                                | 1.046         | -0.468       | -3.223           |         |                    |
| Kurtosis                                | 0.383         | -0.626       | 0.135            |         |                    |
| Grain Size D                            | escription    |              | Fine sand        |         |                    |
| (ASTM-US                                | CS Scale)     | (based on M  | lean from Trask) |         |                    |

 $\begin{array}{l} \text{Coefficient of Curvature, } Cc = (D_{30})^2/(D_{60} \text{ x } D_{10}) \\ D_{30} = 0.255 \\ Cc = 1.381802556 \\ \text{Coefficient of Uniformity, } Cu = D_{60} \ / \ D_{10} \\ D_{60} = 0.092 \\ D_{10} = 0.512 \\ Cu = 0.179657058 \\ \end{array}$ 


| Description | Retained<br>on Sieve # | Weight<br>Percent | Passing<br>through | Cumlative Weights<br>Percent Passing |
|-------------|------------------------|-------------------|--------------------|--------------------------------------|
|             | on Sieve #             |                   | through            |                                      |
| Gravel      | 4                      | 0.56              | 1                  | 100.00                               |
| Coarse Sand | 10                     | 1.23              | 4                  | 99.44                                |
| Medium Sand | 40                     | 11.85             | 10                 | 98.21                                |
| Fine Sand   | 200                    | 53.94             | 40                 | 86.36                                |
| Silt        | <200                   | 11.21             | 200                | 32.42                                |
| Clay        | Pan                    | 21.21             |                    |                                      |
|             | Total                  | 100               | Total              |                                      |

TOTALS
© IGS Laboratories, LLC.

121.31 100.00 100.00 Phone: (713) 316-1800

| INTEGRATEI              |                    |             |                  | _                 |                         |                                                     | -, ~                         |                               |                    |                         |                  |                         | P.W.                                     |                                |                             | JST                   |                            | _                       |                                    |                   |                              |                         |                              | E 1                                |                         | OF    | 1                        |         |                      |          |
|-------------------------|--------------------|-------------|------------------|-------------------|-------------------------|-----------------------------------------------------|------------------------------|-------------------------------|--------------------|-------------------------|------------------|-------------------------|------------------------------------------|--------------------------------|-----------------------------|-----------------------|----------------------------|-------------------------|------------------------------------|-------------------|------------------------------|-------------------------|------------------------------|------------------------------------|-------------------------|-------|--------------------------|---------|----------------------|----------|
| COMPANY                 | -                  |             | aboratories,     | <u>Inc</u>        | c.)                     |                                                     |                              |                               |                    |                         |                  |                         | ANI                                      | NIVO                           | ic n                        | FOL                   | FCT                        |                         |                                    |                   |                              |                         |                              |                                    |                         |       | PO #:                    | 12      | 11.01                |          |
| COMPANY: Harg           | is + Asso          | ociates,    | inc.             | H                 | 1                       | KA                                                  | Г                            |                               |                    |                         |                  |                         | AN                                       | ALYS                           | 15 K                        | EQU                   | E31                        | 184                     | U <sub>O</sub>                     |                   |                              |                         |                              |                                    | ш                       | _     | PO #:<br>BILLING AE      |         |                      |          |
| ADDRESS:<br>3131 Camino | CITY<br>del Rio No | orth. Suite | ZIP CODE<br>355  |                   |                         | T PAC                                               |                              |                               |                    |                         |                  |                         |                                          |                                |                             |                       |                            | ASTM D508               | 11010                              |                   |                              |                         |                              |                                    | CURVE                   |       | 3131 Camino              |         |                      |          |
| San Diego, C/           | 4 92108            |             |                  |                   |                         | Į.                                                  |                              |                               |                    |                         |                  |                         |                                          |                                |                             | 37                    |                            | AS.                     |                                    |                   |                              |                         |                              |                                    | ರ                       |       | BILLING EM<br>BILLING CO | NTACT:  | Jennifer             | McKinney |
| PROJECT MANAGER NAM     |                    | EMAIL       | PHONE #          |                   |                         | OND                                                 |                              |                               |                    |                         |                  |                         | FILE                                     |                                |                             | 4 D29                 |                            |                         | 1                                  |                   |                              |                         |                              | ۳<br>چ                             | ٥                       | 836   | BILLING PH               |         | 858-41<br>ROUND TII  |          |
| Stacia Prazen sp        | razen@ha           | ergis.com   | 858-410-7404     |                   |                         | JUCO                                                | 병                            | 넁                             |                    |                         |                  |                         | ATER-                                    | 5                              |                             | <b>₩</b> ASTM D2937   |                            |                         | D422                               |                   |                              |                         | 35                           | R DRI                              |                         | 90    | 24 HOURS                 | TURIYA  | 5 DAYS               | VIE .    |
| PROJECT NAME:           | iave Wa            | ter Ager    | cy - Oeste       |                   |                         | IYDRAI                                              | ACKA                         | ACKA                          |                    | щ                       |                  | ᇥ                       | ED, W.                                   | D425                           | 854                         |                       | 9                          |                         | ASTM                               |                   | 34318                        | ,,,                     | ACKA                         | WATE                               | RET                     |       | 72 HOURS<br>OTHERS:      |         | NORMA                | L X      |
| PROJECT NUMBER:         | 11.01              |             |                  | l s               | CKAGE                   | √YTIV!                                              | HOIT                         | RTIES F                       | #                  | ACKAG                   | >                | PACKA                   | R-FILL                                   | ASTM                           | STM D                       |                       | PI RP4                     | VIIY,                   | TION,                              | _                 | ASTM                         | ACKAG                   | ILITY P                      | ON BY                              | IRE                     | 1 1   | SAM                      | NPLE IN | TEGRITY (C           |          |
| SITE LOCATION:          |                    | 0.00        | i.               | NUMBER OF SAMPLES | SOIL PROPERTIES PACKAGE | HYDRAULIC CONDUCTIVITY/HYDRAULIC CONDUCTIVITY PACKA | ORE FLUID SATURATION PACKAGE | ICEQ/TNRCC PROPERTIES PACKAGE | APILLARITY PACKAGE | LUID PROPERTIES PACKAGE | CORE PHOTOGRAPHY | /APOR TRANSPORT PACKAGE | OROSITY: TOTAL, AIR-FILLED, WATER-FILLED | PROSITY: EFFECTIVE, ASTM D425M | SPECIFIC GRAVITY, ASTM D854 | BULK DENSITY (DRY), 🖛 | AIR PERMEABILITY, API RP40 | HYDRAULIC CONDUCTIVITY, | GRAIN SIZE DISTRIBUTION, ASTM D422 | OC: WALKLEY-BLACK | ATTERBERG LIMITS, ASTM D4318 | VAPOR INTRUSION PACKAGE | REE PRODUCT MOBILITY PACKAGE | RESIDUAL SATURATION BY WATER DRIVE | SOIL MOISTURE RETENTION |       | INTACT:                  | IGL QU  | TEMP (               | TE       |
| CANADIED CICNIATIIDE.   | on Hills,          | Cainorn     | ia               | ROFS              | PERT                    | LIC CO                                              | /S QIN                       | VRCC I                        | RITY P             | ROPER                   | ЮТО              | RANS                    | ۲: TO                                    | : EFFE                         | : GRA\                      | TISN                  | MEABI                      | JC CO                   | IZE DI                             | \LKLE\            | RG LI                        | NTRU                    | SDOC                         | L SAT                              | MO                      |       |                          |         | 11/2021<br>L FILE NO |          |
|                         | Myc                | t p         | T                | MBE               | IL PR(                  | DRAU                                                | RE FL                        | EQ/TI                         | PILLA              |                         | RE P             | POR                     | ROSI                                     | VIISO                          | ECIFIC                      | LK DE                 | PER!                       | DRAUL                   | AIN S                              | C: W              | TERBE                        | POR                     | E PR                         | SIDUA                              | 등                       |       |                          | 220     | 3-53                 |          |
| SAMPLE ID               | DATE               | TIME        | DEPTH, FEET      | ž                 | S                       | 主                                                   | 5                            | 2                             | 5                  | 근                       | 8                | \$                      | 8                                        |                                | S                           | 3                     | Ā                          |                         |                                    | 임                 | ¥                            | ≸                       | æ                            | 22                                 | S                       |       |                          | COI     | MMENTS               |          |
| Oeste-Recharge-224      |                    | 16:00       | 224 - 224.5      | 1                 | -                       |                                                     |                              | -                             |                    | $\rightarrow$           |                  |                         | -                                        | Х                              |                             | Х                     | -                          | Х                       | Х                                  | -                 | -                            |                         |                              |                                    |                         |       |                          |         |                      |          |
| Oeste-Recharge-260      | 2/3/2022           | 14:00       | 260 - 260.5      | 1                 |                         |                                                     |                              | -                             |                    | -                       | -                |                         | -                                        | Х                              | $\dashv$                    | Х                     | _                          | X                       | Х                                  | _                 | -                            | _                       |                              |                                    | Х                       |       | Target top               | of san  | nple tube            |          |
| Oeste-Recharge-501      | 2/7/2022           | 09:45       | 501 - 501.5      | 1                 |                         |                                                     |                              |                               | _                  | _                       | _                |                         | _                                        | Х                              |                             | Х                     |                            | Х                       | Х                                  | _                 | 4                            | _                       |                              |                                    | Х                       |       |                          |         |                      |          |
| Oeste-Recharge-660      | 2/8/2022           | 10:25       | 660 - 660.5      | 1                 | _                       |                                                     |                              | _                             |                    | _                       |                  |                         |                                          | Х                              |                             | Х                     | _                          | х                       | х                                  |                   | _                            | _                       |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              | 4                             | _                  | _                       |                  |                         |                                          |                                |                             |                       | _                          |                         | _                                  |                   | _                            | 4                       |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              | _                             |                    | _                       |                  |                         |                                          | _                              | _                           |                       | _                          | _                       | _                                  | 4                 | _                            |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              |                               |                    | _                       |                  |                         |                                          | _                              |                             |                       | _                          | _                       | _                                  |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              |                               |                    |                         |                  |                         |                                          |                                |                             |                       |                            |                         |                                    |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              |                               |                    |                         | _                |                         |                                          | _                              |                             |                       |                            |                         |                                    |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              |                               |                    |                         |                  |                         |                                          |                                | _                           |                       | _                          |                         | $\perp$                            |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         |                                                     |                              |                               |                    |                         |                  |                         |                                          |                                |                             |                       |                            |                         |                                    |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
|                         |                    |             |                  |                   |                         | 0                                                   |                              |                               |                    |                         |                  |                         |                                          |                                |                             |                       |                            |                         |                                    |                   |                              |                         |                              |                                    |                         |       |                          |         |                      |          |
| RELINQUISHED BY         | el _               |             | 2: RECEIVED BY:  | 1                 | Xb,                     | _                                                   |                              |                               |                    | 1                       | L. REL           | .inqu                   | ISHE                                     | BY                             |                             |                       |                            |                         |                                    |                   | 2                            | 2: REC                  | EIVE                         | D BY:                              |                         |       |                          |         |                      |          |
| OMPANY Harris + A       | ssociates, I       | ina.        | COMPANY IGS      | ah                | C C                     |                                                     |                              |                               |                    |                         | COMP             | PANY                    |                                          |                                |                             |                       |                            |                         |                                    |                   | -                            | СОМР                    | ANY                          |                                    |                         |       |                          |         |                      |          |
|                         |                    | 10.         | DATE 3/28/2      |                   |                         | TIME                                                | 14                           | :00                           |                    |                         | DATE             |                         |                                          |                                | 1                           | TIME                  |                            |                         |                                    |                   |                              | DATE                    |                              |                                    |                         | -     | TIME                     |         |                      |          |
| 7,5 5/5                 | INTEG              | GRATED GE   | OSCIENCIES LABOR |                   |                         | LLC *                                               | <u> </u>                     |                               | ralc               | REST                    | STRF             | ET. H                   | OUST                                     | ON. T                          | FXAS                        | 7709                  | 12 * PI                    | HONF                    | (713)                              | 316               | 1800                         | * WF                    | RSITE                        | F www                              | w iosl                  | ahora | tories.com               |         |                      |          |

# APPENDIX E GEOPHYSICAL LOGS



All interpretations are opinions based on inferences from electrical or other measurements and Pacific Surveys cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to Pacific Surveys' general terms and conditions set out in our current Price Schedule.

Comments

Calibration Report

Database File 29351.db Dataset Pathname LIM.2 Dataset Creation Tue Feb 1

Tue Feb 15 13:46:34 2022

#### Gamma Ray Calibration Report Serial Number: Tool Model: 38 Performed: Wed Jun 24 13:31:08 2020 Calibrator Value: 200.0 **GAPI** Background Reading: 12.8 cps Calibrator Reading: 182.9 cps Sensitivity: 1.1757 GAPI/cps Temperature Calibration Report 1 Serial Number: Tool Model: 38 Performed: Wed Jun 24 13:31:27 2020 Reference Reading

0.00

1.00

cps

cps

Filter Report

0.00

1.00

0.01 22.90

2

degF

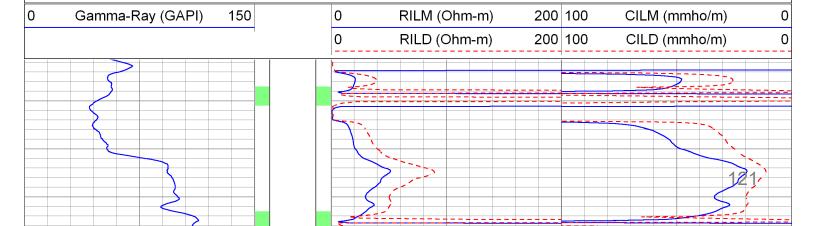
degF

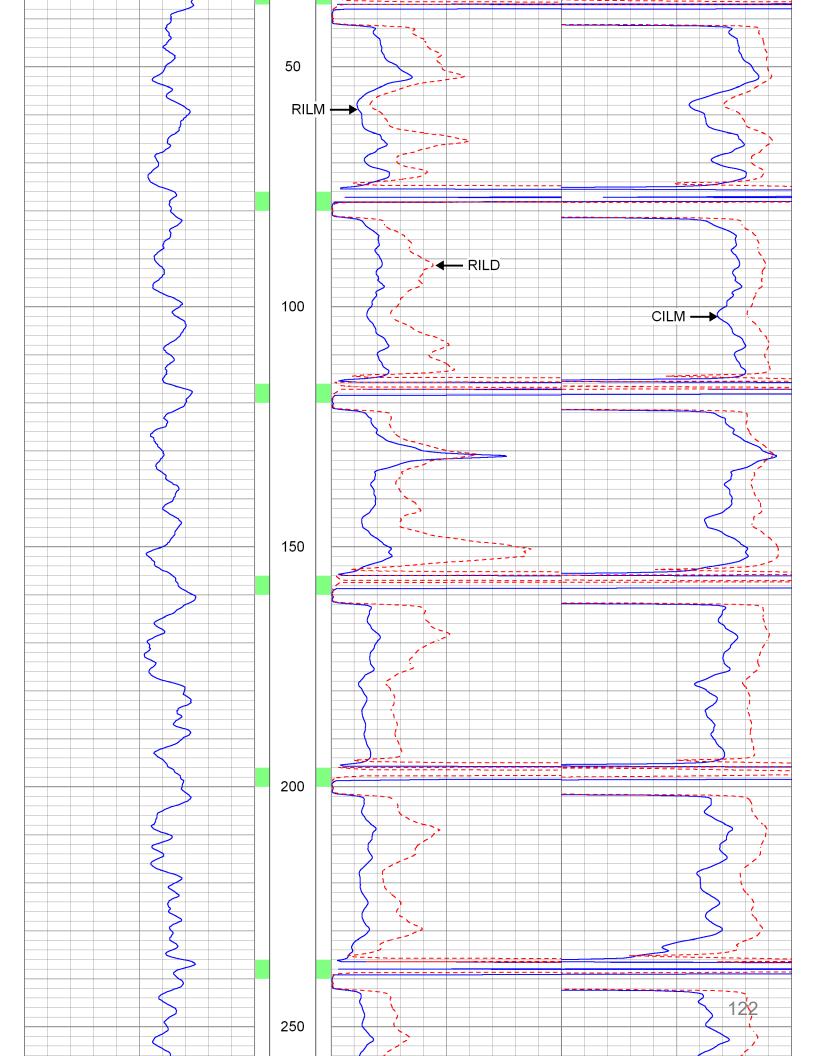
Database File 29351.db Dataset Pathname LIM.2

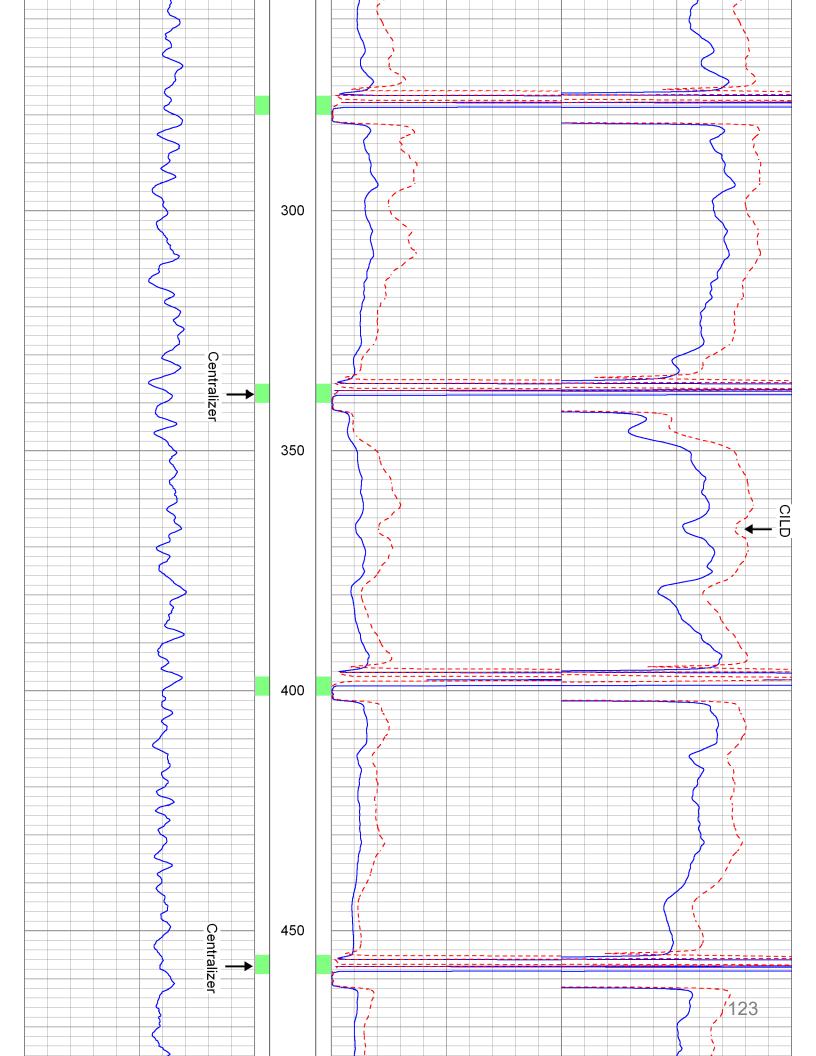
Dataset Creation Tue Feb 15 13:46:34 2022

Low Reference:

High Reference:


**Delta Spacing** 


Gain:


Offset:


| Filter Name | Filter Type | Filter Length |  |  |  |  |  |
|-------------|-------------|---------------|--|--|--|--|--|
|             |             | (ft)          |  |  |  |  |  |
| .SPD        | Gaussian    | 8.00          |  |  |  |  |  |
| .TEN        | Gaussian    | 6.00          |  |  |  |  |  |
| SPDRT       | None        |               |  |  |  |  |  |
| CILD        | Square      | 3.00          |  |  |  |  |  |
| CILM        | Square      | 3.00          |  |  |  |  |  |
| SR .        | Triangle    | 3.00          |  |  |  |  |  |
| EMP         | None        |               |  |  |  |  |  |

Database File 29351.db
Dataset Pathname LIM.2
Presentation Format dil\_ps
Dataset Creation Tue Feb 15 13:46:34 2022
Charted by Depth in Feet scaled 1:240









# APPENDIX F DEVELOPMENT SUMMARY



# WELL DEVELOPMENT LOG

WELL ID: Oeste-R

DEVELOPMENT CONTRACTOR ABC Liovin

PROJECT: 1311.01

STATIC DTW 541.2 CASING DIAMETER 4"

SCREEN DIAMETER 4"

CASING VOLUME 7.3

DISPOSITION OF DISCHARGE WATER

MONITORING EQUIPMENT USED

DEVELOPMENT METHOD AND EQUIPMENT USED

grundfos

COMMENTS

| Flow Rate (gpm)   Depth to Water (gpm)   De | COMMENTS |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| 3/2 1232 1.0 541.5 10 10 6.85 0.558 1143 23.76 Begin Purge 3/2 1251 1.5 541.5 19 29 6.56 0.547 1064 26.98  3/2 1312 2.0 541.5 25 44 6.62 0.543 26 27.76  3/2 1338 2.0 541.5 25 69 6.63 0.542 54 28.05  3/2 1338 2.0 541.5 25 94 6.69 0.540 53 27.92  3/2 1351 2.0 541.5 25 119 6.75 0.544 61 27.71  3/2 1403 2.0 541.5 25 144 6.78 0.544 38 27.93  3/2 1415 2.0 541.5 25 169 6.77 0.543 21 28.02  3/2 1415 2.0 541.5 25 169 6.75 0.544 34 28.46  3/2 1440 2.0 541.5 25 194 6.78 0.543 19 28.14  3/2 1440 2.0 541.5 25 219 6.78 0.543 19 28.14  3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12  3/2 1517 2.0 541.5 25 244 6.81 0.543 16 27.12  3/2 1518 2.0 541.5 25 294 6.78 0.548 8.8 26.38  3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Guestionable  3/2 1545 2.0 541.5 25 319 6.76 0.547 6.2 26.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10       |  |  |  |
| 3/2 1312 2.0 541.5 25 44 6.62 0.543 26 27.76 3/2 1325 2.0 541.5 25 69 6.63 0.542 54 28.05 3/2 1338 2.0 541.5 25 94 6.69 0.540 53 27.92 3/2 1351 2.0 541.5 25 119 6.75 0.544 61 27.71 3/2 1403 2.0 541.5 25 144 6.78 0.544 38 27.93 3/2 1415 2.0 541.5 25 169 6.77 0.543 21 28.02 3/2 1427 2.0 541.5 25 194 6.75 0.544 34 28.46 3/2 1440 2.0 541.5 25 194 6.75 0.543 19 28.14 3/2 1505 2.0 541.5 25 244 6.81 0.543 19 28.14 3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12 3/2 1530 2.0 541.5 25 29 6.80 0.545 8.5 26.66 3/2 1535 2.0 541.5 25 294 6.78 0.548 8.8 26.38 3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 3/2 1550 2.0 541.5 25 314 6.76 0.547 6.2 25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @ 12.22  |  |  |  |
| 3/2 1312 2.0 541.5 25 44 6.62 0.543 26 27.76  3/2 1325 2.0 541.5 25 69 6.63 0.542 54 28.05  3/2 1338 2.0 541.5 25 94 6.69 0.540 53 27.92  3/2 1351 2.0 541.5 25 119 6.75 0.544 61 27.71  3/2 1403 2.0 541.5 25 144 6.78 0.544 38 27.93  3/2 1415 2.0 541.5 25 169 6.77 0.543 21 28.02  3/2 1427 2.0 541.5 25 194 6.75 0.544 34 28.46  3/2 1440 2.0 541.5 25 194 6.75 0.543 19 28.14  3/2 1505 2.0 541.5 25 219 6.78 0.543 19 28.14  3/2 1517 2.0 541.5 25 244 6.81 0.543 16 27.12  3/2 1530 2.0 541.5 25 299 6.80 0.545 8.5 26.66  3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Guestionable  3/2 1550 2.0 541.5 25 319 6.76 0.547 6.2 25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 12 22  |  |  |  |
| 3/2   1325   2.0   541.5   25   69   6.63   0.542   54   28.05     3/2   1338   2.0   541.5   25   94   6.69   0.540   53   27.92     3/2   1351   2.0   541.5   25   119   6.75   0.544   61   27.71     3/2   1403   2.0   541.5   25   144   6.78   0.544   38   27.93     3/2   1415   2.0   541.5   25   169   6.77   0.543   21   28.02     3/2   1427   2.0   541.5   25   194   6.75   0.544   34   28.46     3/2   1440   2.0   541.5   25   219   6.78   0.543   19   28.14     3/2   1505   2.0   541.5   25   244   6.81   0.543   16   27.19     3/2   1517   2.0   541.5   25   269   6.80   0.545   8.5   26.66     3/2   1530   2.0   541.5   25   294   6.78   0.548   8.8   26.38     3/2   1545   2.0   541.5   25   319   6.76   0.547   18   26.10   Guestionable     3/2   1550   2.0   541.5   25   314   6.76   0.547   6.2   25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |  |
| 3/2 1338 2.0 541.5 25 94 6.69 0.540 53 27.92 3/2 1351 2.0 541.5 25 119 6.75 0.544 61 27.71 3/2 1403 2.0 541.5 25 144 6.78 0.544 38 27.93 3/2 1415 2.0 541.5 25 169 6.77 0.543 21 28.02 3/2 1427 2.0 541.5 25 194 6.75 0.544 34 28.46 3/2 1440 2.0 541.5 25 219 6.78 0.543 19 28.14 3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12 3/2 1517 2.0 541.5 25 269 6.80 0.545 8.5 26.66 3/2 1530 2.0 541.5 25 294 6.78 0.548 8.8 26.38 3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 3/2 1550 2.0 541.5 25 319 6.76 0.547 6.2 25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |  |  |  |
| 3/2 1351 2.0 541.5 25 119 6.75 0.544 61 27.71 3/2 1403 2.0 541.5 25 144 6.78 0.544 38 27.93 3/2 1415 2.0 541.5 25 169 6.77 0.543 21 28.02 3/2 1427 2.0 541.5 25 194 6.75 0.544 34 28.46 3/2 1440 2.0 541.5 25 219 6.78 0.543 19 28.14 3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12 3/2 1517 2.0 541.5 25 269 6.80 0.545 8.5 26.66 3/2 1530 2.0 541.5 25 294 6.78 0.548 8.8 26.38 3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 3/2 1550 2.0 541.5 25 314 6.76 0.547 6.2 25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |  |
| $\frac{3}{2}$ $\frac{1403}{2}$ $\frac{2.0}{3}$ $\frac{541.5}{2}$ $\frac{25}{25}$ $\frac{144}{6}$ $\frac{6.78}{6.77}$ $\frac{0.544}{0.543}$ $\frac{38}{21}$ $\frac{27.93}{28.02}$ $\frac{3}{2}$ $\frac{1427}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{194}{6.75}$ $\frac{6.75}{0.544}$ $\frac{34}{34}$ $\frac{28.46}{28.14}$ $\frac{3}{2}$ $\frac{1505}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{219}{244}$ $\frac{6.81}{6.81}$ $\frac{0.543}{0.543}$ $\frac{16}{27.12}$ $\frac{27.12}{3}$ $\frac{3}{2}$ $\frac{1517}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{269}{6.80}$ $\frac{6.80}{0.545}$ $\frac{8.5}{8.5}$ $\frac{26.66}{26.38}$ $\frac{3}{2}$ $\frac{1545}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{294}{6.76}$ $\frac{6.76}{0.547}$ $\frac{18}{6.2}$ $\frac{26.10}{6.26}$ $\frac{6.96}{6.26}$ $\frac{3}{4}$ $\frac{1545}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{319}{344}$ $\frac{6.76}{6.76}$ $\frac{0.547}{0.547}$ $\frac{6.2}{6.2}$ $\frac{2592}{6.92}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |  |  |
| 3/2       1415       2.0       541.5       25       169       6.77       0.543       21       28.02         3/2       1427       2.0       541.5       25       194       6.75       0.543       34       28.46         3/2       1440       2.0       541.5       25       219       6.78       0.543       19       28.14         3/2       1505       2.0       541.5       25       244       6.81       0.543       16       27.12         3/2       1517       2.0       541.5       25       269       6.80       0.545       8.5       26.66         3/2       1530       2.0       541.5       25       294       6.78       0.548       8.8       26.38         3/2       1545       2.0       541.5       25       319       6.76       0.547       18       26.10       Guestionable         3/2       1550       2.0       541.5       25       344       6.76       0.547       6.2       2592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  |  |  |
| $\frac{3}{2}$ $\frac{1427}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{194}{6.75}$ $\frac{6.75}{0.544}$ $\frac{34}{34}$ $\frac{28.46}{28.14}$ $\frac{3}{2}$ $\frac{1505}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{244}{6.81}$ $\frac{6.81}{0.543}$ $\frac{0.543}{16}$ $\frac{16}{27.12}$ $\frac{27.12}{3}$ $\frac{3}{2}$ $\frac{1517}{2.0}$ $\frac{25}{41.5}$ $\frac{25}{25}$ $\frac{269}{6.80}$ $\frac{6.80}{0.545}$ $\frac{8.5}{8.5}$ $\frac{26.66}{26.38}$ $\frac{3}{2}$ $\frac{1545}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{294}{6.76}$ $\frac{6.76}{0.547}$ $\frac{0.547}{18}$ $\frac{18}{26.10}$ $\frac{26.10}{6.96}$ $\frac{3}{42}$ $\frac{1550}{2.0}$ $\frac{2.0}{541.5}$ $\frac{25}{25}$ $\frac{319}{344}$ $\frac{6.76}{6.76}$ $\frac{0.547}{0.547}$ $\frac{6.2}{6.2}$ $\frac{2592}{0.542}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |  |
| 3/2 1440 2.0 541.5 25 219 6.78 0.543 19 28.14<br>3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12<br>3/2 1517 2.0 541.5 25 269 6.80 0.545 8.5 26.66<br>3/2 1530 2.0 541.5 25 294 6.78 0.548 8.8 26.38<br>3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |  |  |  |
| 3/2 1505 2.0 541.5 25 244 6.81 0.543 16 27.12<br>3/2 1517 2.0 541.5 25 269 6.80 0.545 8.5 26.66<br>3/2 1530 2.0 541.5 25 294 6.78 0.548 8.8 26.38<br>3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 19<br>3/2 1550 2.0 541.5 25 344 6.76 0.547 6.2 2592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |  |  |  |
| \$\frac{4}{2}\$ \$\frac{1517}{2.0}\$ \$\frac{541.5}{25}\$ \$\frac{25}{269}\$ \$\frac{6.80}{6.80}\$ \$\text{0.545}\$ \$\frac{8.5}{8.5}\$ \$\frac{26.66}{26.66}\$ \$\frac{3}{2}\$ \$\frac{1530}{2.0}\$ \$\frac{541.5}{25}\$ \$\frac{25}{319}\$ \$\frac{6.76}{6.76}\$ \$\text{0.547}\$ \$\frac{18}{18}\$ \$\frac{26.10}{60.66}\$ \$\frac{60.66}{60.66}\$ \$\frac{344}{6.76}\$ \$\frac{6.547}{6.2}\$ \$\frac{6.2}{26.92}\$ \$\frac{26.92}{6.92}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |  |  |
| 3/2 1530 2.0 541.5 25 294 6.78 0.548 8.8 26.38<br>3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable 3/2 1650 2.0 541.5 25 344 6.76 0.547 6.2 2592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,        |  |  |  |
| 3/2 1545 2.0 541.5 25 319 6.76 0.547 18 26.10 Questionable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |  |  |  |
| 42 1550 2.0 541.5 25 344 6.76 0.547 6.2 25.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTU      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7701     |  |  |  |
| 1/2 1585 2.0 541.5 10 354 6.79 0.547 4.0 26.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |  |  |
| 3/2 1600 2.0 541.5 10 364 6.79 0.550 3.7 25.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |  |  |  |

PAGE \_\_\_ OF \_\_\_

# APPENDIX G WATER QUALITY LABORATORY REPORT



ACCREDITED

CERTIFICATE #'s 5890.01 & 5890.02

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: (626) 386-1100 Fax: (866) 988-3757 1 800 566 LABS (1 800 566 5227)

# **Laboratory Report**

for

Mojave Water Agency 13846 Conference Center Drive Apple Valley, CA 92307 Attention: Melody Bailey



XGI6: Alice Lee Project Manager



Report: 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

- \* Accredited in accordance with TNI 2016 and ISO/IEC 17025:2017.
- \* Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis.
- \* As applicable, this report consists of the cover page, State Certification List, ISO 17025 Accredited Method List, Acknowledgement of Samples Received, Comments, Hits Report, Data Report, QC Summary, QC Report and Regulatory Forms.
- \* Test results relate only to the sample(s) tested.
- \* Test results apply to the sample(s) as received, unless otherwise noted in the comments report (ISO/IEC 17025:2017).
- \* This report shall not be reproduced except in full, without the written approval of the laboratory.
- \* This report includes ISO/IEC 17025 and non-ISO 17025 accredited methods.



# STATE CERTIFICATION LIST

| State            | Certification Number | State                                      | Certification Number |
|------------------|----------------------|--------------------------------------------|----------------------|
| Alabama          | 41060                | Montana                                    | Cert 0035            |
| Arizona          | AZ0778               | Nebraska                                   | NE-OS-21-13          |
| Arkansas         | CA00006              | Nevada                                     | CA00006              |
| California       | 2813                 | New Hampshire *                            | 2959                 |
| Colorado         | CA00006              | New Jersey *                               | CA 008               |
| Connecticut      | PH-0107              | New Mexico                                 | CA00006              |
| Delaware         | CA 006               | New York *                                 | 11320                |
| Florida *        | E871024              | North Carolina                             | 06701                |
| Georgia          | 947                  | North Dakota                               | R-009                |
| Guam             | 21-008R              | Ohio - 537.1                               | 87786                |
| Hawaii           | CA00006              | Oregon *                                   | 4034                 |
| ldaho            | CA00006              | Pennsylvania *                             | 68-00565             |
| Illinois         | 200033               | Puerto Rico                                | CA00006              |
| Indiana          | C-CA-01              | Rhode Island                               | LAO00326             |
| Iowa – Asbestos  | 413                  | South Carolina                             | 87016                |
| Kansas *         | E-10268              | South Dakota                               | CA11320              |
| Kentucky         | 90107                | Tennessee                                  | TN02839              |
| Louisiana *      | LA008                | Texas *                                    | T104704230-20-18     |
| Maine            | CA00006              | Utah (Primary AB) *                        | CA00006              |
| Maryland         | 224                  | Vermont                                    | VT0114               |
| Marianas Islands | MP0004               | Virginia *                                 | 460260               |
| Massachusetts    | M-CA006              | Washington                                 | C838                 |
| Michigan         | 9906                 | EPA Region 5                               | CA00006              |
| Mississippi      | CA00006              | Los Angeles County<br>Sanitation Districts | 10264                |

<sup>\*</sup> NELAP/TNI Recognized Accreditation Bodies

# ISO/IEC 17025:2917 Accredited Method List

The test listed below are accredited and met the requirements of ISO/IEC 17025 as verify by A2LA. Refer to our certificates and scope of accreditations (no. 5890-1 and 5890-2) found at:

<a href="https://www.eurofinsus.com/Eaton">https://www.eurofinsus.com/Eaton</a>

| Test(s)   Method(s)   Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  |         | WWW.Eui |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------|---------|
| Enterococi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tost(s)                               | Method(s)        | Potable | Waste   |
| Escherichia coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test(s)                               | wethou(s)        | Water * | Water   |
| Escherichia coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enterococci                           | Enterolert       | Y       | Y       |
| CEnumeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |         |         |
| Fecal Coliform (P/A and Enumeration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | X       |         |
| Renumeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                     |                  |         |         |
| Entimeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | (MTF/FC) SM 9221 | v       | v       |
| Enterococci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enumeration)                          | E (MTF/EC)       | ^       | ^       |
| Enterococci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fecal Streptococci and                |                  |         |         |
| Heterotrophic Bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | SM 9230 B        | X       | X       |
| Legionella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | OM 0045 D        |         |         |
| Desire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | <del></del>      |         |         |
| Pseudomonas aeruginosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Legionella                            | Legiolert®       | X       |         |
| Total Coliform (P/A and Enumeration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Idexx            |         |         |
| Total Coliform (P/A and Enumeration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pseudomonas aeruginosa                | Pseudalert       | X       |         |
| Enumeration   S2218, SM 9221 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Caliform (D/A and               |                  |         |         |
| Total Coliform, Total Coliform with Chlorine Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |                  | х       | х       |
| Coliform with Chlorine   Present   Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 9221B, SM 9221 C |         |         |
| Coliform with Chlorine   Present   Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Coliform, Total                 |                  |         |         |
| Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Coliform with Chlorine                | 01100015         | х       | х       |
| Total Coliforn/E. coli (P/A and Enumeration, Ideax Colient, Idea   |                                       | SM 9221 B        |         |         |
| Enumeration, Idexx Colliert, Idexx Colliert 18, Collier   |                                       |                  |         |         |
| Idex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | CM 0222          | v       |         |
| Total Microcystins and Nodularins   SM 9610   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 31VI 9223        | ^       |         |
| Nodularins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |         |         |
| Yeast and Mold         SM 9610         x           1,2,3-Trichloropropane (TCP) at 5 PPT         CA SRL 524M-TCP         x           1,4-Dioxane         EPA 522         x           2,3,7,8-TCDD         Modified EPA 1613 B         x           Acrylamide         *LCMS 2440)         x           Alkalinity         SM 2320B         x           Alkalinity         SM 2320B         x           Ammonia         SM 4500-NH3         x           Ammonia         SM 4500-NH3         x           Absestos         EPA 350.1,         x           Asbestos         EPA 100.2         x         x           Bicarbonate Alkalinity as HCO3         SM 2330 B         x         x           Bicarbonate Alkalinity as HCO3         SM 2330 B         x         x           Bromate         *LCMS-2447         x         x           Carbonate as CO3         SM 2330 B         x         x           Carbonate as CO3         SM 2330 B         x         x           Chlorine Dioxide         EPA 410.4, SM 5220D         x         x           Chlorine Free, Combined, Total Residual, Chloramines         SM 4500-CLO2         x           Chlorine, Free, Combined, Total Residual, Chloramines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | EPA 546          | Χ       |         |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 011.0010         |         |         |
| TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yeast and Mold                        | SM 9610          | X       |         |
| TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                  |         |         |
| CICP) at 5 PP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | CA SRL 524M-     | v       |         |
| Acrylamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (TCP) at 5 PPT                        | TCP              | ^       |         |
| Acrylamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | Х       |         |
| Acrylamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1 Dioxano                           |                  | ^       |         |
| Acrylamide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3,7,8-TCDD                          |                  | X       |         |
| Algal Toxins/Microcystin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _,=,=,=====                           | 1613 B           |         |         |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acrylamide                            | +LCMS 2440)      | X       |         |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Algal Toxins/Microcystin              | + LCMS 3570      | X       |         |
| Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |         | V       |
| Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alkallility                           |                  | ^       | ^       |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |         |         |
| Asbestos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ammonia                               | SM 4500-NH3      |         | Х       |
| Bicarbonate Alkalinity as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | H                |         |         |
| Bicarbonate Alkalinity as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ashestos                              | FPA 100 2        | Y       | Y       |
| HCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | ^       | ^       |
| BOD/CBOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                     | SIVI 2330 B      | X       | x       |
| Bromate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |         |         |
| Carbonate as CO3         SM 2330 B         x         x           Carbonyls         EPA 556         x         x           Chemical Oxygen Demand         EPA 410.4, SM 5220D         x           Chlorinated Acids         EPA 515.4         x           Palin Test Chlordio X Plus, SM 4500-CLO2 D         x           Chlorine, Free, Combined, Total Residual, Chloramines         SM 4500-CL G         x           Conductivity         EPA 120.1, SM 2510B         x           Conductivity         EPA 120.1, SM 2510B         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x           Cyanide (Amenable)         SM 4500-CN G         x         x           Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride (Screen)         (WC-24467)         x         x           Diquat and Paraquat EPA 549.2         x         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBP/TCP         EPA 548.1, *(LCMS-24445)         x           EDTA and NTA         *WC-2454         x <t< td=""><td>BOD/CBOD</td><td>SM 5210 B</td><td></td><td>X</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BOD/CBOD                              | SM 5210 B        |         | X       |
| Carbonate as CO3         SM 2330 B         x         x           Carbonyls         EPA 556         x         x           Chemical Oxygen Demand         EPA 410.4, SM 5220D         x           Chlorinated Acids         EPA 515.4         x           Palin Test Chlordio X Plus, SM 4500-CLO2 D         x           Chlorine, Free, Combined, Total Residual, Chloramines         SM 4500-CL G         x           Conductivity         EPA 120.1, SM 2510B         x           Conductivity         EPA 120.1, SM 2510B         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x           Cyanide (Amenable)         SM 4500-CN G         x         x           Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride (Screen)         (WC-24467)         x         x           Diquat and Paraquat EPA 549.2         x         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBP/TCP         EPA 548.1, *(LCMS-24445)         x           EDTA and NTA         *WC-2454         x <t< td=""><td>Bromate</td><td>+LCMS- 2447</td><td>X</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromate                               | +LCMS- 2447      | X       |         |
| Carbonyls         EPA 556         x         x           Chemical Oxygen Demand         EPA 410.4, SM 5220D         x           Chlorinated Acids         EPA 515.4         x           Palin Test Chlordio X Plus, SM 4500-CLO2 D         x           Chlorine, Free, Combined, Total Residual, Chloramines         SM 4500-CL G         x           Corductivity         EPA 120.1, SM 2510B         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x           Cyanide (Amenable)         SM 4500-CN G         x         x           Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride (Screen)         (WC-24467)         x         x           Diquat and Paraquat EPA 549.2         x         x           Dissolved Organic Carbon Dissolved Oxygen         SM 4500-C G         x         x           EDB/DCBP/TCP         EPA 549.2         x         x           EDB/DCBP/TCP         EPA 549.2         x         x           EDB/DCBP/TCP         EPA 549.1         x         x           EDB/DCBP/TCP         EPA 504.1         x         x           EDB/DCBP/TCP         EPA 551.1         x         x           EDTA and NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |         |         |
| Chemical Oxygen Demand Chlorinated Acids Chlorinated Acids EPA 515.4 Palin Test Chloridio X Plus, SM 4500-CLO2 D Chlorine, Free, Combined, Total Residual, Chloramines Color SM2120B Conductivity SM 2510B  Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated Cyanide (Amenable) Cyanide (Free) SM 4500-CN G Cyanide (Total) Cyanogen Chloride (Screen) Cyacreen) Cyacreen Diquat and Paraquat Dissolved Organic Carbon Dissolved Oxygen EDB/DCBP/TCP EDB/DBCP and Disinfection Byproducts EPA 547 EIndoride SM 4500-C SM 2330 B X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |         |         |
| Chlorinated Acids  Chlorine Dioxide  Chlorine, Free, Combined, Total Residual, Chloramines  Color  Conductivity  Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated  Cyanide (Free)  Cyanide (Total)  Cyanogen Chloride  (Screen)  Diguat and Paraquat  Dissolved Organic Carbon  Dissolved Organic Carbon  Dissolved Organic Carbon  Dissolved Organic Carbon  Disinfection Byproducts  EPA 5481, *(LCMS-24445)  EPA 5487, *(LCMS-2445)  EPA 5487, *(LCMS-2648)  EPA 5487, *(LCMS-2618)  EPA 5487, *(LCMS-3618)  EPA 5487, * | Carbonyis                             |                  | Х       | X       |
| Chlorinated Acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chamical Owigan Damand                | EPA 410.4,       |         | v       |
| Chlorinated Acids  EPA 515.4  Palin Test Chlorine Dioxide  Chlorine, Free, Combined, Total Residual, Chloramines  Color  SM 4500-CLO2 D  Conductivity  EPA 120.1, SM 2510B  Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated  Cyanide (Amenable)  Cyanide (Free)  SM 4500-CN G X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical Oxygen Demand                | SM 5220D         |         | X       |
| Palin Test   Chlorine Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorinated Acids                     |                  | Y       |         |
| Chlorine Dioxide         Chlordio X Plus, SM 4500-CLO2 D         X           Chlorine, Free, Combined, Total Residual, Chloramines         SM 4500-Cl G         X           Color         SM2120B         X           Conductivity         EPA 120.1, SM 2510B         X           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         X           Cyanide (Amenable)         SM 4500-CN G         X         X           Cyanide (Free)         SM 4500-CN G         X         X           Cyanide (Total)         EPA 335.4         X         X           Cyanogen Chloride (Screen)         (WC-24467)         X         X           Diquat and Paraquat EPA 549.2         X         X           Dissolved Organic Carbon Dissolved Organic Carbon SM 5310 C         X         X           Dissolved Oxygen EDB/DCBP/TCP EPA 504.1         X         X           EDB/DBP/TCP EPA 551.1         X         EPA 551.1         X           EDTA and NTA         * WC-2454         X         X           EPA 548.1, *(LCMS-2445)         X         X           Fluoride SM 4500F C         X         X         X           Glyphosate and AMPA         * LCMS-3618         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Onionnatod / toldo                    |                  | Α       |         |
| Chilorine Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |         |         |
| SM 4500-CLO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chlorine Diovide                      |                  | Y       |         |
| Chlorine, Free, Combined, Total Residual, Chloramines         SM 4500-CI G         x           Color         SM2120B         x           Conductivity         EPA 120.1, SM 2510B         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x           Cyanide (Amenable)         SM 4500-CN G         x         x           Cyanide (Free)         SM 4500-CN G         x         x           Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride (Screen)         (WC-24467)         x         x           Diquat and Paraquat EPA 549.2         x         x         x           Dissolved Organic Carbon Dissolved Organic Carbon SM 5310 C         x         x           Dissolved Oxygen EDB/DCBP/TCP EPA 504.1         x         x           EDB/DCBP/TCP EPA 551.1         x         x           EDTA and NTA *WC-2454         x         x           Endothall Endothall         EPA 548.1, *(LCMS-2445)         x           Fluoride Silphosate and AMPA *LCMS-3618         x         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chlorine Dioxide                      | SM 4500-CLO2     | ^       |         |
| Total Residual, Chloramines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | D                |         |         |
| Total Residual, Chloramines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chlorine Free Combined                | _                |         |         |
| Chloramines         Color         SM2120B         x           Conductivity         EPA 120.1, SM 2510B         x         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x         x           Cyanide (Amenable)         SM 4500-CN G SW XW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | SM 4500-CI G     |         |         |
| Color         SM2120B         x           Conductivity         EPA 120.1, SM 2510B         x         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x         x           Cyanide (Amenable)         SM 4500-CN G         x         x           Cyanide (Free)         SM 4500CN F         x         x           Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride (Screen)         (WC-24467)         x         x           Diquat and Paraquat         EPA 549.2         x         x           DBP and HAA         SM 6251 B         x         x           Dissolved Organic Carbon         SM 5310 C         x         x           Dissolved Oxygen         SM 4500-O G         x         x           EDB/DCBP/TCP         EPA 504.1         x         EPA 551.1         x           EDTA and NTA         * WC-2454         x         EPA 548.1, *         *           *(LCMS-24445)         x         x         EPA 547         x           Glyphosate and AMPA         * LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  | Х       |         |
| Conductivity         EPA 120.1, SM 2510B         x         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x         x           Cyanide (Amenable)         SM 4500-CN G         x         x         x           Cyanide (Free)         SM 4500CN F         x         x         x           Cyanide (Total)         EPA 335.4         x         x         x           Cyanogen Chloride         † 335 Mod (WC-24467)         x         x         x         x           Diquat and Paraquat         EPA 549.2         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloramines                           |                  |         |         |
| Conductivity         EPA 120.1, SM 2510B         x         x           Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated         SM 2330 B         x         x           Cyanide (Amenable)         SM 4500-CN G         x         x         x           Cyanide (Free)         SM 4500CN F         x         x         x           Cyanide (Total)         EPA 335.4         x         x         x           Cyanogen Chloride         † 335 Mod (WC-24467)         x         x         x         x           Diquat and Paraquat         EPA 549.2         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Color                                 | SM2120B          | X       |         |
| Contactivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                  |         |         |
| Corrosivity (Langelier Index), Carbonate as CO3, Hydroxide as OH Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conductivity                          |                  | X       | Х       |
| Index), Carbonate as CO3, Hydroxide as OH Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 31VI 23 10D      |         |         |
| Hydroxide as OH Calculated   SM 2330 B   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |         |         |
| Calculated   Calculated   Calculated   Cyanide (Amenable)   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | SM 2330 B        | v       |         |
| Cyanide (Amenable)         SM 4500-CN<br>G         X         X           Cyanide (Free)         SM 4500CN F         X         X           Cyanide (Total)         EPA 335.4         X         X           Cyanogen Chloride<br>(Screen)         + 335 Mod<br>(WC-24467)         X           Diquat and Paraquat         EPA 549.2         X           DBP and HAA         SM 6251 B         X           Dissolved Organic Carbon         SM 5310 C         X           Dissolved Oxygen         SM 4500-O G         X           EDB/DCBP/TCP         EPA 504.1         X           EDB/DBP/TCP         EPA 551.1         X           EDTA and NTA         + WC-2454         X           EPA 548.1,<br>+(LCMS-2445)         X           Fluoride         SM 4500F C         X         X           Glyphosate         EPA 547         X           Glyphosate and AMPA         + LCMS-3618         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hydroxide as OH                       | OW 2000 D        | ^       |         |
| Cyanide (Amenable)         SM 4500-CN<br>G         X         X           Cyanide (Free)         SM 4500CN F         X         X           Cyanide (Total)         EPA 335.4         X         X           Cyanogen Chloride<br>(Screen)         + 335 Mod<br>(WC-24467)         X           Diquat and Paraquat         EPA 549.2         X           DBP and HAA         SM 6251 B         X           Dissolved Organic Carbon         SM 5310 C         X           Dissolved Oxygen         SM 4500-O G         X           EDB/DCBP/TCP         EPA 504.1         X           EDB/DBP/TCP         EPA 551.1         X           EDTA and NTA         + WC-2454         X           EPA 548.1,<br>+(LCMS-2445)         X           Fluoride         SM 4500F C         X         X           Glyphosate         EPA 547         X           Glyphosate and AMPA         + LCMS-3618         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |         |         |
| Cyanide (Amenable)         G         X         X           Cyanide (Free)         SM 4500CN F         X         X           Cyanide (Total)         EPA 335.4         X         X           Cyanogen Chloride (Screen)         *335 Mod (WC-24467)         X           Diquat and Paraquat         EPA 549.2         X           DBP and HAA         SM 6251 B         X           Dissolved Organic Carbon         SM 5310 C         X           Dissolved Oxygen         SM 4500-0 G         X           EDB/DCBP/TCP         EPA 504.1         X           EDB/DBP/TCP and Disinfection Byproducts         EPA 551.1         X           EDTA and NTA         * WC-2454         X           EPA 548.1, *(LCMS-2445)         X           Fluoride         SM 4500F C         X         X           Glyphosate         EPA 547         X           Glyphosate and AMPA         * LCMS-3618         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Carouratou                            | CM 4500 CN       |         |         |
| Cyanide (Free) SM 4500CN F X X  Cyanide (Total) EPA 335.4 X X  Cyanogen Chloride +335 Mod (Screen) (WC-24467) X  Diquat and Paraquat EPA 549.2 X  DBP and HAA SM 6251 B X  Dissolved Organic Carbon SM 5310 C X  EDB/DCBP/TCP EPA 504.1 X  EDB/DBCP and Disinfection Byproducts  EDTA and NTA +WC-2454 X  Endothall EPA 548.1, *(LCMS-2445) X  Fluoride SM 4500F C X X  Glyphosate and AMPA +LCMS-3618 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cyanide (Amenable)                    |                  | X       | Х       |
| Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride<br>(Screen)         +335 Mod<br>(WC-24467)         x           Diquat and Paraquat         EPA 549.2         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and<br>Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         + WC-2454         x           EPA 548.1,<br>*(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         + LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · | <del></del>      |         |         |
| Cyanide (Total)         EPA 335.4         x         x           Cyanogen Chloride<br>(Screen)         + 335 Mod<br>(WC-24467)         x         x           Diquat and Paraquat         EPA 549.2         x         x           DBP and HAA         SM 6251 B         x         x           Dissolved Organic Carbon         SM 5310 C         x         x           Dissolved Oxygen         SM 4500-O G         x         x           EDB/DCBP/TCP         EPA 504.1         x         EPA 551.1         x           EDTA and NTA         + WC-2454         x         EPA 548.1, +(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         + LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cyanide (Free)                        | SM 4500CN F      | X       | Х       |
| Cyanogen Chloride<br>(Screen)         +335 Mod<br>(WC-24467)         x           Diquat and Paraquat         EPA 549.2         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and<br>Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         + WC-2454         x           EPA 548.1,<br>*(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         + LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cyanide (Total)                       |                  |         |         |
| (Screen)         (WC-24467)         X           Diquat and Paraquat         EPA 549.2         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         † WC-2454         x           EPA 548.1, †(LCMS-2445)         x           Fluoride         SM 4500F C         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         † LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |         | - '     |
| Diquat and Paraquat         EPA 549.2         x           DBP and HAA         SM 6251 B         x           Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         * WC-2454         x           Endothall         EPA 548.1, *(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         * LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                  | X       |         |
| DBP and HAA         SM 6251 B         X           Dissolved Organic Carbon         SM 5310 C         X           Dissolved Oxygen         SM 4500-0 G         X           EDB/DCBP/TCP         EPA 504.1         X           EDB/DBCP and Disinfection Byproducts         EPA 551.1         X           EDTA and NTA         * WC-2454         X           Endothall         EPA 548.1, *(LCMS-24445)         X           Fluoride         SM 4500F C         X         X           Glyphosate         EPA 547         X           Glyphosate and AMPA         * LCMS-3618         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |         |         |
| Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         * WC-2454         x           Endothall         EPA 548.1, +(LCMS-24445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         * LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  | X       |         |
| Dissolved Organic Carbon         SM 5310 C         x           Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         * WC-2454         x           Endothall         EPA 548.1, +(LCMS-24445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         * LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DBP and HAA                           | SM 6251 B        | Х       |         |
| Dissolved Oxygen         SM 4500-O G         x           EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         † WC-2454         x           Endothall         EPA 548.1, †(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         † LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                  |         |         |
| EDB/DCBP/TCP         EPA 504.1         x           EDB/DBCP and Disinfection Byproducts         EPA 551.1         x           EDTA and NTA         + WC-2454         x           Endothall         EPA 548.1, +(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         + LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                  | ^       | V       |
| EDB/DBCP and Disinfection Byproducts         EPA 551.1         X           EDTA and NTA         † WC-2454         x           Endothall         EPA 548.1, †(LCMS-2445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         † LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                  |         | X       |
| Disinfection Byproducts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | EPA 504.1        | X       |         |
| Disinfection Byproducts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EDB/DBCP and                          | EDA FE4 4        |         | 7       |
| EDTA and NTA         † WC-2454         x           Endothall         EPA 548.1, †(LCMS-24445)         x           Fluoride         SM 4500F C         x         x           Glyphosate         EPA 547         x           Glyphosate and AMPA         * LCMS-3618         x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | EPA 551.1        | X       |         |
| Endothall         EPA 548.1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | + \\\\C 2454     | V       |         |
| +(LCMS-2445)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LDTA dIU IVTA                         | <del></del>      | Α       |         |
| Tluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Endothall                             |                  | ¥       |         |
| Glyphosate EPA 547 x Glyphosate and AMPA +LCMS-3618 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Endotriali                            | +(LCMS-2445)     | ^       |         |
| Glyphosate EPA 547 x Glyphosate and AMPA +LCMS-3618 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fluoride                              | SM 4500F C       | X       | Х       |
| Glyphosate and AMPA + LCMS-3618 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |         |         |
| Gross Alpha and Gross Beta EPA 900.0 x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                  |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross Alpha and Gross Beta            | EPA 900.0        | X       | X       |

| Test(s)                                  | Method(s)                                    | Potable | Waste      |
|------------------------------------------|----------------------------------------------|---------|------------|
| Gross Alpha                              | SM 7110 C                                    | Water * | Water<br>x |
| coprecipitation                          |                                              |         |            |
| Hardness                                 | SM 2340 B                                    | Х       | Х          |
| Hexavalent Chromium Hexavalent Chromium  | EPA 218.6,<br>EPA 218.7,                     | X       | Х          |
| Hexavalent Chromium                      | SM 3500-Cr B                                 | Х       | Х          |
| Inorganic Anions and DBPs                | EPA 300.0                                    | Х       | X          |
| Norganic Anions and DBPs                 | EPA 300.1                                    | X       | Α          |
| Kjeldahl Nitrogen                        | EPA 351.2                                    |         | Х          |
| Metals                                   | EPA 200.7,<br>EPA200.8                       | х       | х          |
| Nitrosamines                             | EEA-Agilent 521.1                            | Х       |            |
| Nitrate/Nitrite Nitrogen                 | (GCMS-24250)<br>EPA 353.2                    | X       | Х          |
| Odor                                     | SM2150B                                      | X       |            |
| Organohalide Pesticides                  |                                              |         |            |
| and PCB                                  | EPA 505                                      | Х       |            |
| Ortho Phosphate                          | SM 4500P E                                   | Х       |            |
| Oxyhalides Disinfection                  | EPA 317.0                                    | X       |            |
| Byproducts                               |                                              |         |            |
| Perchlorate                              | EPA 331.0                                    | Х       |            |
| Perchlorate (Low and High Levels)        | EPA 314.0                                    | X       |            |
| Perfluorinated Alkyl Acids               | EPA 533, EPA<br>537, EPA 537.1               | x       |            |
| PPCP and EDC                             | *LCMS-2443                                   | Х       |            |
|                                          | EPA 150.1                                    |         |            |
| рН                                       | SM 4500-H+ B                                 | X       | Х          |
| Phenolics – Low Level                    | *WC 2493 (EPA<br>420.2 and EPA<br>420.4 MOD) | х       | х          |
| Phenylurea<br>Pesticides/Herbicides      | +LCMS-2448                                   | х       |            |
| Radium-226, Radium-228                   | GA Tech (Rad-<br>2374)                       | х       |            |
| Radon-222                                | SM 7500RN                                    | Х       |            |
| Residue (Filterable)                     | SM 2540C                                     | Х       | Х          |
| Residue (Non-Filterable)                 | SM 2540D                                     |         | Х          |
| Residue (Total)                          | SM 2540B                                     |         | Х          |
| Residue (Volatile)                       | EPA 160.4                                    |         | Х          |
| Semi-Volatile Compounds                  | EPA 525.2                                    | Х       |            |
| Silica                                   | SM 4500-SiO2<br>C                            | Х       | Х          |
| Sulfide                                  | SM 4500-S D                                  |         | Х          |
| Sulfite                                  | SM 4500-SO3 B                                | X       | X          |
| Surfactants Taste and Odor               | SM 5540C<br>SM 6040 E                        | X       | Х          |
| Total Organic Carbon                     | SM 5310 C                                    | X<br>X  | X          |
| Total Phenols                            | EPA 420.1                                    | ^       | X          |
| Total Phenois                            | EPA 420.4                                    | Х       | X          |
| Triazine Pesticides and their Degradates | +LCMS-3617                                   | х       | -          |
| Turbidity                                | EPA 180.1                                    | Х       | Х          |
| Uranium by ICP/MS                        | EPA 200.8                                    | X       |            |
| UV 254 Organic<br>Constituents           | SM 5910B                                     | x       |            |
| VOCs                                     | EPA 524.2                                    | X       |            |
| VOCs                                     | <sup>+</sup> (GCMS 2412)<br>by EPA 524.2     | Х       |            |
|                                          | modified                                     |         |            |

<sup>(\*)</sup> includes: Bottled Water, Drinking Water and Water as Component of Food & Beverage.

<sup>(+)</sup> In-House Method



# **Acknowledgement of Samples Received**

Addr: **Mojave Water Agency** 13846 Conference Center Drive Apple Valley, CA 92307 Client ID: MOJAVE-CA Folder #: 990476

Project: WATER-QUALITY

Sample Group: JOB#310 DATA COLLECTION

Attn: Melody Bailey Phone: 760-946-7030

Project Manager: Alice Lee Phone: (626) 386-1117

The following samples were received from you on **March 02**, **2022** at **1826**. They have been scheduled for the tests listed below each sample. If this information is incorrect, please contact your service representative. Thank you for using Eurofins Eaton Analytical, LLC.

| Sample #     | Sample ID                     |                                     | Sample Date                    |
|--------------|-------------------------------|-------------------------------------|--------------------------------|
| 202203020945 | ORMW-1                        |                                     | 03/02/2022 1610                |
|              | ,                             | @ICPMS DISSOLVED                    | Alkalinity in CaCO3 units      |
|              | Anion Sum - Calculated        | Apparent Color                      | Bicarb.Alkalinity as HCO3,calc |
|              | Bicarbonate                   | Boron Dissolved ICAP                | Calcium Dissolved ICAP         |
|              | Carbonate (as CaCO3)          | Carbonate as CO3, Calculated        | Cation Sum - Calculated        |
|              | Cation/Anion Difference       | Chloride                            | Field pH                       |
|              | Fluoride                      | Hexavalent Chromium by 218.6        | Hydroxide (as CaCO3)           |
|              | Iron Dissolved ICAP           | Iron Total ICAP                     | Iron_Ferric_Calscience         |
|              | Iron_Ferrous_Calscience       | Langelier Index - 25 degree         | Langlier Index at 60 degrees C |
|              | Magnesium Dissolved ICAP      | Mercury ICPMS                       | Nitrate as Nitrogen by IC      |
|              | Nitrate as NO3 (calc)         | Nitrite as NO2 (calc)               | Nitrite Nitrogen by IC         |
|              | Orthophosphate as P (OPO4)    | Orthophosphate as PO4               | Oxidation Reduction Potential  |
|              | PH (H3=past HT not compliant) | Potassium Dissolved ICAP            | Silica Dissolved               |
|              | Sodium Dissolved ICAP         | Source Temperature Degrees C        | Specific Conductance           |
|              | Sulfate                       | Total Dissolved Solid (TDS)         | Total Hardness as CaCO3 by ICP |
|              | Total Nitrate Nitrite-N CALC  | Total phosphorus as P               | Total phosphorus as PO4- Calc. |
|              | Turbidity                     | Uranium Dissolved by ICPMS as pCi/L | Uranium dissolved ICAP/MS      |

# **Test Description**

@ICP -- ICP Metals

@ICPMS DISSOLVED -- ICPMS Metals

Reported: 04/06/2022



| Agency                     |                                       |             |             | CHA                  | AIN              | OF               | CU                  | IST       | OD.      | YR       | ECO      | RD  |          |          |          |          | L      | 191     | elfe  |         | Р        | age _        | of        |         |
|----------------------------|---------------------------------------|-------------|-------------|----------------------|------------------|------------------|---------------------|-----------|----------|----------|----------|-----|----------|----------|----------|----------|--------|---------|-------|---------|----------|--------------|-----------|---------|
| Laboratory Name: Euro-     | fins E                                | aton        |             |                      |                  |                  |                     |           |          |          |          |     |          |          |          |          |        | U       |       |         |          |              |           |         |
| Laboratory Project Manager | : Alice                               | Lee         |             |                      |                  |                  |                     |           |          |          |          | P.0 | O./Pr    | oject    | t Nar    | ne: T    | TOF    | 3#.     | 3/01  | YATTA   | cou      | ECTI         | ON        |         |
| Address: 750 Royal         | Oaks                                  | DRIVE       | 2, Suite    | e 10                 | 00               |                  |                     |           |          |          |          | м   | NA P     | roje     | ct Ma    | nage     | er: /\ | lele    | dy    | Bai     | leu      |              |           |         |
| city: MonRovia             |                                       |             | State: (    |                      |                  |                  | 0:9                 | 10        | 16-      | -34      | 029      | MV  | NA P     | oint     | of C     | ontac    | t Na   | me &    | Phone | e # iMe | Verly E  | baleu        | 760-      | 403-365 |
| Tel: 626-386-1100          | Fax: (0.                              | 26-386      | -1101       |                      |                  |                  |                     |           |          |          | Signa    |     |          |          |          |          |        |         |       |         | J        | -            |           | -       |
| 4                          | · · · · · · · · · · · · · · · · · · · |             |             |                      |                  | RE               | QUE                 | ST        | ED A     | NAL      | YSE      | s   |          |          |          |          |        |         |       |         |          |              |           |         |
| Sample I.D.                | Matrix                                | Sample Date | Sample Time | Number of Containers | General Minerals | General Physical | Inorganic Chemicals |           | hed list |          |          |     |          |          |          |          |        |         |       | Special | l Instru | ctions:      |           |         |
| ORMW-1                     |                                       | 3/2/22      |             | 5                    | -0               | 0                | =                   | _         | X        | $\dashv$ | +        | 1   | +        | $\vdash$ |          | 十        | +      | +       |       | ald =   | >H: :    | 75 70        | 00        |         |
|                            | S L G                                 | 12/22       | 1010        |                      |                  |                  |                     |           |          | +        | +        | T   |          |          | $\vdash$ | 十        | +      | +       |       |         | mp.      |              |           |         |
|                            | SLG                                   |             |             | $\vdash$             |                  |                  |                     |           | $\dashv$ |          | +        | +   | $\vdash$ | $\vdash$ |          | $\dashv$ | +      | +       | Pic   | 20 10   | anp.     | 0.7          | 7         |         |
|                            | SLG                                   |             |             | $\vdash$             |                  |                  | 7                   |           | $\dashv$ |          | +        | +   | $\vdash$ |          | $\dashv$ | +        | +      | +       | +-    |         |          |              |           |         |
|                            | SLG                                   |             |             | $\vdash$             |                  |                  |                     | $\exists$ | $\dashv$ |          | +        | +   | +        | $\vdash$ |          | +        | +      | +       | +-    |         |          |              |           |         |
|                            | SLG                                   |             |             | $\Box$               |                  |                  | 7                   |           |          | +        | $\dashv$ | +   | $\vdash$ | $\vdash$ | $\dashv$ | +        | +      | +       | +-    |         |          |              |           |         |
|                            | SLG                                   |             |             |                      |                  |                  | $\neg$              |           | $\dashv$ |          | +        | +   | $\vdash$ |          |          | +        | +      | +       | +     |         |          |              |           | -       |
|                            | SLG                                   |             |             | $\Box$               |                  |                  | $\neg$              | $\dashv$  |          |          | $\dashv$ | +   | $\vdash$ |          | $\neg$   | +        | +      | +       | +-    |         |          |              |           |         |
|                            | SLG                                   |             |             | $\vdash$             |                  |                  | $\dashv$            | $\neg$    | $\dashv$ |          | $\dashv$ | +   | $\vdash$ |          | $\dashv$ | +        | +      | +       | +     |         |          |              |           |         |
|                            | SLG                                   |             |             | $\Box$               |                  |                  | $\dashv$            | $\neg$    | $\dashv$ |          | +        | +   | $\vdash$ | $\vdash$ | $\dashv$ | +        | +      | +       | +     |         |          |              |           |         |
| Relinquished by:           |                                       | 3/2         | Date/Time:  | 182                  | 25               |                  |                     |           | eived l  |          | 20       |     | 3        | 5/2      | 12       | 2        |        | ate/Tir |       |         | Norma    | ound Timal X | 7<br>48 h | day     |
| Relinquished by:           |                                       |             | Date/Time:  |                      |                  | $\dashv$         | 1                   | Rece      | eived I  | by:      |          |     |          |          |          |          | Da     | ate/Tin | ne:   |         | 24 Hou   | rs           | Same      | Day     |
| Relinquished by:           |                                       |             | Date/Time:  |                      |                  | $\neg$           |                     | Rece      | eived l  | by:      |          |     |          |          |          |          | Di     | ate/Tir | ue.   |         | Sample   | Integrity    | / Terr    | n: 132  |

Intact:

On Ice:

Page 5 of 42 page

| and eurofins                                                                                                                                                                                                                                                                   | INTERNAL CHAIN                                                                                                                                   | N OF CUSTODY                                                                                                                | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Eaton Analytica  EEA Folder Number: 4944  IR Gun ID = 6184 (Observed)                                                                                                                                                                                                          | SAMPLE TEMP RI  Note: If samples are out of tem                                                                                                  | perature range, let the ASMs know. ASMs will de<br>DAY OF COLLECTION? Yes                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | analysis or not.                            |
| TYPE OF ICE: Real Synthetic METHOD OF SHIPMENT: Pick-Up / Walk                                                                                                                                                                                                                 | No Ice CONDITION OF ICE                                                                                                                          | E: Frozen Partially Froz                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                         |
| Compliance Acceptance Criteria:  1) Chemistry: >0, ≤6°C, not frozen (N                                                                                                                                                                                                         | ELAP) (if received after 24 hrs of sample<br>C, not frozen (can be ≥10°C if received on                                                          | collection)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5)                                          |
| <ol> <li>Microbiology, Surface Water: &lt; 10</li> <li>If out of temperature range for both Chemistry and Microbiology<br/>samples and temperature does not confirm, then measure the<br/>temperature of each quadrant and record each temperature of<br/>quadrants</li> </ol> | the 1 - (Observation= "C) (Corr.Factor "C)                                                                                                       | ection                                                                                                                      | _ *C) (Corr.Factor *C) (Final *C) ( |                                             |
| 5) pH Check. Manufacturer:                                                                                                                                                                                                                                                     | st be between 0-4 °C, not frozen (if receive<br>Lot Number:pH str<br>ansafe. Lot No.: Expiration D                                               | ip type: 0 - 14 or                                                                                                          | Expiration Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results:                                    |
| Headspace:  Headspace Do  Exempt from headspace concerns: Meth                                                                                                                                                                                                                 | mples with Headspace:  ocumentation (use additional VOC and Foods 515.4, HAA(6251,552), 505, SPME, @CH, 532LC  Samp ID Bottle # None/< >6mm Test | Samples with Headspace (see Radon Internal COFC for addings, 556, 536, Anatoxin, LCMS methods Samp ID Bottle # None/<8 >6mm | tional bottles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tional clients:  Bottle # None/<6 >6mm Test |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
| Note Sample IDs which have dissimilar head                                                                                                                                                                                                                                     | dspace (i.e. potential sampling errors):  PRINT NAME  Gustavo Savolues                                                                           | COMPANY/TITLE  Eurofins Eaton Analytical                                                                                    | 3/2/2Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIME 1826                                   |
| SIGNATURE SAMPLES CHECKED AGAINST COC BY:                                                                                                                                                                                                                                      | PRINT NAME                                                                                                                                       | COMPANY/TITLE Eurofins Eaton Analytical                                                                                     | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIME                                        |

# Mojave Analyses List

Alkalinity- Bicarbonate (as CaCO3) CA DW

Alkalinity- Carbonate (as CaCO3) CA DW

Alkalinity- Hydroxide (as CaCO3) CA DW

Aluminum-200.8, Diss CA DW

Antimony- 200.8, Diss CA DW

Arsenic-200.8, Diss CA DW

Barium- 200.8, Diss CA DW

Beryllium- 200.8, Diss CA DW

Boron-200.7, Diss CA DW

Cadmium- 200.8, Diss CA DW

Calcium- 200.7 CA DW

Calcium- 200.7, Diss CA DW

Cation/Anion Balance

Chloride- 300.0 CA DW

Chromium-200.8, Diss CA DW

Chromium VI- 218.6 CA DW

Color- SM2120D CA DW

Conductivity- SM2510B CA DW

Copper- 200.8, Diss CA DW

Fluoride-SM4500-F CA DW

Hardness- SM2340B CA DW

Iron-200.7 CA DW

Iron-200.7, Diss CA DW

Iron- Ferric (use group code)

Iron-Fe +2 (SM3500-Fe D)

Langlier Index CA DW

Lead- 200.8, Diss CA DW

Magnesium- 200.7 CA DW

Magnesium- 200.7, Diss CA DW

Manganese- 200.8, Diss CA DW

Mercury- 245.1, Diss CA DW

Nickel- 200.8, Diss CA DW

Nitrate-N, 300.0 CA DW

Nitrate-NO3, 300.0 CA DW

Nitrite-N, 300.0 CA DW

Nitrite-NO2, 300.0

NO3+NO2 as N, 300.0

pH-150.1 CA DW

Phos-PO4, ortho- 365.3, Diss

Potassium- 200.7, Diss CA DW

Potassium- 200.7 CA DW

Redox Potential (Eh)

Selenium- 200.8, Diss CA DW Silica- EPA 200.7 Diss CA DW Sodium- 200.7, Diss CA DW Sodium- 200.7 CA DW Sulfate- 300.0 CA DW TDS- SM2540C CA DW Temperature- Field Result (C) Thallium- 200.8, Diss CA DW Turbidity- 180.1 CA DW Uranium- 200.8, Diss CA DW (pCi/L) Vanadium- 200.8, Diss CA DW

Zinc-200.8, Diss CA DW

### Containers for this group:

2 x lL poly unpreserved

1 x 500ml poly unpreserved

1 x 250ml poly with nitric (Total metals **not** filtered)

1 x 250ml poly with nitric (Field filtered for dissolved metals)

### = 5 Total Sampling Bottles





1 800 566 LABS (1 800 566 5227)

Report: 990476
Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

Mojave Water Agency Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307

#### **Folder Comments**

Analytical results for Oxidatoin Reduction Potential, Ferric Iron and Ferrous Iron are submitted by Eurofins Calscience, Irvine, CA. CA cert 2706 exp 6-30-22

### Flags Legend:

J - Analyte is positively identified, but tentatively quantified as an estimate concentration. The analyte was either detected between MDL and MRL or did not meet any one of the required QC criteria. HF - Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

**Group: JOB#310 DATA COLLECTION** 

Mojave Water Agency

Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307 Samples Received on: 03/02/2022 1826

| Analyzed         | Analyte Sample ID                     | Result | Federal MCL | Units     | MRL    |
|------------------|---------------------------------------|--------|-------------|-----------|--------|
|                  | 202203020945 <u>ORMW-1</u>            |        |             |           |        |
| 03/12/2022 21:17 | Alkalinity in CaCO3 units             | 170    |             | mg/L      | 2.0    |
| 03/14/2022 10:51 | Anion Sum - Calculated                | 6.1    |             | meq/L     | 0.0010 |
| 03/22/2022 13:04 | Barium dissolved ICAP/MS              | 32     |             | ug/L      | 2.0    |
| 03/14/2022 10:51 | Bicarb.Alkalinity as HCO3calc         | 200    |             | mg/L      | 2.0    |
| 03/14/2022 10:51 | Bicarbonate as CaCO3                  | 170    |             | mg/L      |        |
| 03/17/2022 12:59 | Calcium Dissolved ICAP                | 61     |             | mg/L      | 1.0    |
| 03/08/2022 18:02 | Calcium Total ICAP                    | 62     |             | mg/L      | 1.0    |
| 03/07/2022 18:36 | Cation Sum - Calculated               | 6.2    |             | meq/L     | 0.0010 |
| 03/03/2022 08:55 | Chloride                              | 2.3    | 250         | mg/L      | 1.0    |
| 03/22/2022 13:04 | Chromium dissolved ICAP/MS            | 22     |             | ug/L      | 1.0    |
| 03/22/2022 13:04 | Copper dissolved ICAP/MS              | 3.1    |             | ug/L      | 2.0    |
| 03/17/2022 12:59 | Dissolved Silica                      | 21     |             | mg/L      | 0.50   |
| 03/02/2022 16:10 | Field pH                              | 6.79   |             | Units     |        |
| 03/14/2022 17:30 | Fluoride                              | 0.18   | 4           | mg/L      | 0.050  |
| 03/14/2022 12:54 | Hexavalent Chromium by 218.6          | 21     |             | ug/L      | 0.040  |
| 03/14/2022 11:06 | Hydroxide (as CaCO3)                  | 0.0031 |             | mg/L      |        |
| 03/07/2022 18:36 | Langelier Index - 25 degree           | -0.55  |             | None      | -14    |
| 03/17/2022 12:59 | Magnesium Dissolved ICAP              | 24     |             | mg/L      | 0.10   |
| 03/08/2022 18:02 | Magnesium Total ICAP                  | 24     |             | mg/L      | 0.10   |
| 03/22/2022 13:04 | Manganese dissolved ICAP/MS           | 5.5    |             | ug/L      | 2.0    |
| 03/03/2022 08:55 | Nitrate as Nitrogen by IC             | 0.30   | 10          | mg/L      | 0.10   |
| 03/03/2022 08:55 | Nitrate as NO3 (calc)                 | 1.3    | 45          | mg/L      | 0.44   |
| 03/03/2022 09:00 | Orthophosphate as P                   | 0.033  |             | mg/L      | 0.010  |
| 03/07/2022 22:25 | Orthophosphate as PO4                 | 0.10   |             | mg/L      | 0.031  |
| 03/23/2022 14:34 | Oxidation Reduction Potential         | 397    |             | mV        |        |
| 03/12/2022 21:17 | PH (H3=past HT not compliant)         | 8.1    |             | Units     | 0.10   |
| 03/17/2022 12:59 | Potassium Dissolved ICAP              | 6.3    |             | mg/L      | 1.0    |
| 03/08/2022 18:02 | Potassium Total ICAP                  | 6.1    |             | mg/L      | 1.0    |
| 03/17/2022 12:59 | Sodium Dissolved ICAP                 | 24     |             | mg/L      | 1.0    |
| 03/08/2022 18:02 | Sodium Total ICAP                     | 24     |             | mg/L      | 1.0    |
| 03/02/2022 16:10 | Source Temperature Degrees C          | 25.7   |             | Degrees C |        |
| 03/12/2022 21:17 | Specific Conductance, 25 C            | 570    |             | umho/cm   | 10     |
| 03/03/2022 08:55 | Sulfate                               | 130    | 250         | mg/L      | 1.0    |
| 03/09/2022 00:25 | Total Dissolved Solids (TDS)          | 360    | 500         | mg/L      | 10     |
| 03/07/2022 18:36 | Total Hardness as CaCO3 by ICP (calc) | 250    |             | mg/L      | 3.0    |
| 03/03/2022 08:55 | Total Nitrate, Nitrite-N, CALC        | 0.30   |             | mg/L      | 0.050  |
|                  |                                       |        |             |           |        |





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

**Group: JOB#310 DATA COLLECTION** 

**Mojave Water Agency** 

Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307 Samples Received on: 03/02/2022 1826

| Analyzed         | Analyte                  | Sample ID | Result | Federal MCL | Units | MRL   |
|------------------|--------------------------|-----------|--------|-------------|-------|-------|
| 03/30/2022 18:52 | Total phosphorus as P    |           | 0.035  |             | mg/L  | 0.020 |
| 04/04/2022 18:23 | Total phosphorus as PO4  | - Calc.   | 0.11   |             | mg/L  | 0.030 |
| 03/03/2022 09:15 | Turbidity                |           | 1.9    | 5           | NTU   | 0.10  |
| 03/22/2022 13:58 | Uranium Diss by ICPMS a  | as pCi/L  | 2.1    |             | pCi/L |       |
| 03/22/2022 13:04 | Uranium dissolved ICAP/N | MS        | 3.1    |             | ug/L  | 1.0   |
| 03/22/2022 13:04 | Vanadium Dissolved ICAF  | P/MS      | 5.5    |             | ug/L  | 3.0   |
| 03/22/2022 13:04 | Zinc dissolved ICAP/MS   |           | 820    |             | ug/L  | 20    |





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

**Project: WATER-QUALITY** 

**Group: JOB#310 DATA COLLECTION** 

**Mojave Water Agency** 

Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307 Samples Received on: 03/02/2022 1826

| Prepped  | Analyzed       | Prep Batch       | Analytical Batch | Method          | Analyte                       | Result   | Units          | MRL     | Dilution |
|----------|----------------|------------------|------------------|-----------------|-------------------------------|----------|----------------|---------|----------|
| ORMW-    | -1 (20220302   | <u>0945)</u>     |                  |                 |                               | Samp     | led on 03/02/2 | 022 161 | 0        |
|          |                | FIELD/SM2        | 2550B - Source   | Temperature D   | egrees C                      |          |                |         |          |
|          | 03/02/22 16:10 |                  | 1391482          | (FIELD/SM2550B) | Source Temperature Degrees C  | 25.7     | Degrees C      |         | 1        |
|          |                | EPA 150.1        | - Field pH       |                 |                               |          |                |         |          |
|          | 03/02/22 16:10 |                  | 1391480          | (EPA 150.1)     | Field pH                      | 6.79     | Units          |         | 1        |
|          |                | ASTM D14         | 98 - Oxidation I | Reduction Pote  | ntial                         |          |                |         |          |
|          | 03/23/22 14:34 |                  |                  | (ASTM D1498)    | Oxidation Reduction Potential | 397 (HF) | mV             |         | 1        |
|          |                | <b>EPA 200.8</b> | - ICPMS Metals   | ;               |                               |          |                |         |          |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Aluminum dissolved ICAP/MS    | ND       | ug/L           | 20      | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Antimony dissolved ICAP/MS    | ND       | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Arsenic dissolved ICAP/MS     | ND       | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Barium dissolved ICAP/MS      | 32       | ug/L           | 2.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Beryllium dissolved ICAP/MS   | ND       | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Cadmium dissolved ICAP/MS     | ND       | ug/L           | 0.50    | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Chromium dissolved ICAP/MS    | 22       | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Copper dissolved ICAP/MS      | 3.1      | ug/L           | 2.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Lead dissolved ICAP/MS        | ND       | ug/L           | 0.50    | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Manganese dissolved ICAP/MS   | 5.5      | ug/L           | 2.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Nickel dissolved ICAP/MS      | ND       | ug/L           | 5.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Selenium dissolved ICAP/MS    | ND       | ug/L           | 5.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Thallium dissolved ICAP/MS    | ND       | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Uranium dissolved ICAP/MS     | 3.1      | ug/L           | 1.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Vanadium Dissolved ICAP/MS    | 5.5      | ug/L           | 3.0     | 1        |
| 03/03/22 | 03/22/22 13:04 | 1391002          | 1394922          | (EPA 200.8)     | Zinc dissolved ICAP/MS        | 820      | ug/L           | 20      | 1        |
|          |                | EPA 200.7        | - ICP Metals     |                 |                               |          |                |         |          |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Boron Dissolved ICAP          | ND       | mg/L           | 0.050   | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Calcium Dissolved ICAP        | 61       | mg/L           | 1.0     | 1        |
| 03/03/22 | 03/08/22 18:02 | 1391002          | 1391800          | (EPA 200.7)     | Calcium Total ICAP            | 62       | mg/L           | 1.0     | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Dissolved Silica              | 21       | mg/L           | 0.50    | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Iron Dissolved ICAP           | ND       | mg/L           | 0.010   | 1        |
| 03/03/22 | 03/08/22 18:02 | 1391002          | 1391800          | (EPA 200.7)     | Iron Total ICAP               | ND       | mg/L           | 0.010   | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Magnesium Dissolved ICAP      | 24       | mg/L           | 0.10    | 1        |
| 03/03/22 | 03/08/22 18:02 | 1391002          | 1391800          | (EPA 200.7)     | Magnesium Total ICAP          | 24       | mg/L           | 0.10    | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Potassium Dissolved ICAP      | 6.3      | mg/L           | 1.0     | 1        |
| 03/03/22 | 03/08/22 18:02 | 1391002          | 1391800          | (EPA 200.7)     | Potassium Total ICAP          | 6.1      | mg/L           | 1.0     | 1        |
| 03/03/22 | 03/17/22 12:59 | 1391002          | 1394312          | (EPA 200.7)     | Sodium Dissolved ICAP         | 24       | mg/L           | 1.0     | 1        |
| 03/03/22 | 03/08/22 18:02 | 1391002          | 1391800          | (EPA 200.7)     | Sodium Total ICAP             | 24       | mg/L           | 1.0     | 1        |
|          |                |                  |                  | •               |                               |          |                |         |          |

Rounding on totals after summation.

(c) - indicates calculated results. Analysis is a calculated result. Reported results are not rounded until the final step before reporting. Therefore methods that use a test result with further calculation may have slight differences in final result than the component analyses.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

**Group: JOB#310 DATA COLLECTION** 

**Mojave Water Agency** 

Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307 Samples Received on: 03/02/2022 1826

| Prepped  | Analyzed       | Prep Batch       | Analytical Batch                   | Method                   | Analyte                               | Result     | Units | MRL    | Dilution |
|----------|----------------|------------------|------------------------------------|--------------------------|---------------------------------------|------------|-------|--------|----------|
|          |                | EPA 200.8        | - Mercury ICPM                     | IS                       |                                       |            |       |        |          |
| 03/03/22 | 03/22/22 13:04 |                  | 1394923                            | (EPA 200.8)              | Mercury dissolved ICAP/MS             | ND         | ug/L  | 0.20   | 1        |
|          |                | SM4500-PE        | E/EPA 365.1 - To                   | otal phosphoru           | ıs as PO4- Calc.                      |            |       |        |          |
|          | 04/04/22 18:23 |                  | (                                  | (SM4500-PE/EPA<br>365.1) | Total phosphorus as PO4- Calc.        | 0.11 (c)   | mg/L  | 0.030  | 1        |
|          |                | SM 2330B         | - Langelier Inde                   | ex - 25 degree           |                                       |            |       |        |          |
|          | 03/07/22 18:36 |                  |                                    | (SM 2330B)               | Langelier Index - 25 degree           | -0.55 (c)  | None  | -14    | 1        |
|          |                | SM2330B -        | Carbonate as 0                     | CO3, Calculate           | d                                     |            |       |        |          |
|          | 03/31/22 11:50 |                  |                                    | (SM2330B)                | Carbonate as CO3, Calculated          | ND (c)     | mg/L  | 2.0    | 1        |
|          |                | SM 2340B         | - Total Hardnes                    | s as CaCO3 by            | ICP                                   |            |       |        |          |
|          | 03/07/22 18:36 |                  |                                    | (SM 2340B)               | Total Hardness as CaCO3 by ICP (calc) | 250 (c)    | mg/L  | 3.0    | 1        |
|          |                | SM 1030E         | - Anion Sum - C                    |                          |                                       |            |       |        |          |
|          | 03/14/22 10:51 |                  |                                    | (SM 1030E)               | Anion Sum - Calculated                | 6.1 (c)    | meq/L | 0.0010 | 1        |
|          |                | SM 1030E         | - Cation Sum - 0                   |                          |                                       |            |       |        |          |
|          | 03/07/22 18:36 |                  |                                    | (SM 1030E)               | Cation Sum - Calculated               | 6.2 (c)    | meq/L | 0.0010 | 1        |
|          |                | SM 4500P-        | E - Orthophosp                     | •                        | •                                     |            |       |        |          |
|          | 03/07/22 22:25 |                  |                                    | (SM 4500P-E)             | Orthophosphate as PO4                 | 0.10 (c)   | mg/L  | 0.031  | 1        |
|          |                | SM2330B -        | Bicarb.Alkalini                    | ty as HCO3,ca            | lc                                    |            |       |        |          |
|          | 03/14/22 10:51 |                  |                                    | (SM2330B)                | Bicarb.Alkalinity as HCO3calc         | 200 (c)    | mg/L  | 2.0    | 1        |
|          |                | SM 2330B         | <ul> <li>Langlier Index</li> </ul> | at 60 degrees            | С                                     |            |       |        |          |
|          | :              |                  |                                    | (SM 2330B)               | Langelier Index at 60 degrees C       | NA (c)     | None  | -14    | 1        |
|          |                | SM 1030E         | - Cation/Anion I                   | Difference               |                                       |            |       |        |          |
|          | 03/15/22 23:07 |                  |                                    | (SM 1030E)               | Cation/Anion Difference               | 1.3 (c)    | %     |        | 1        |
|          |                | SM 2320B         | - Bicarbonate a                    | s CaCO3, calc            |                                       |            |       |        |          |
|          | 03/14/22 10:51 |                  |                                    | (SM 2320B)               | Bicarbonate as CaCO3                  | 170 (c)    | mg/L  |        | 1        |
|          |                | <b>EPA 200.8</b> | - Uranium Diss                     | olved by ICPM            | S as pCi/L                            |            |       |        |          |
|          | 03/22/22 13:58 |                  |                                    | (EPA 200.8)              | Uranium Diss by ICPMS as pCi/L        | 2.1 (c)    | pCi/L |        | 1        |
|          |                | Default - N      | itrite as NO2 (ca                  | alc)                     |                                       |            |       |        |          |
|          | 03/14/22 13:06 |                  |                                    | (Default)                | Nitrite as NO2 (calc)                 | ND (c)     | mg/L  | 0.16   | 1        |
|          |                | SM2330B -        | Carbonate (as                      | CaCO3)                   |                                       |            |       |        |          |
|          | 03/31/22 11:50 |                  |                                    | (SM2330B)                | Carbonate (as CaCO3)                  | ND (c)     | mg/L  | 2.0    | 1        |
|          |                | SM 2320 B        | - Hydroxide (as                    | s CaCO3)                 |                                       |            |       |        |          |
|          | 03/14/22 11:06 |                  |                                    | (SM 2320 B)              | Hydroxide (as CaCO3)                  | 0.0031 (c) | mg/L  |        | 1        |
|          |                | <b>EPA 300.0</b> | - Nitrate, Nitrite                 | by EPA 300.0             |                                       |            |       |        |          |
|          | 03/03/22 08:55 |                  | 1390854                            | (EPA 300.0)              | Nitrate as Nitrogen by IC             | 0.30       | mg/L  | 0.10   | 2        |
|          | 03/03/22 08:55 |                  | 1390854                            | (EPA 300.0)              | Nitrate as NO3 (calc)                 | 1.3        | mg/L  | 0.44   | 2        |
|          | 03/03/22 08:55 |                  | 1390854                            | (EPA 300.0)              | Nitrite Nitrogen by IC                | ND         | mg/L  | 0.10   | 2        |
|          | 03/03/22 08:55 |                  | 1390854                            | (EPA 300.0)              | Total Nitrate, Nitrite-N, CALC        | 0.30       | mg/L  | 0.050  | 1        |

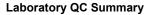




1 800 566 LABS (1 800 566 5227)

**Report:** 990476

**Project: WATER-QUALITY** 


**Group: JOB#310 DATA COLLECTION** 

**Mojave Water Agency** 

Melody Bailey 13846 Conference Center Drive Apple Valley, CA 92307 Samples Received on: 03/02/2022 1826

| Prepped  | Analyzed       | Prep Batch       | Analytical Batch  | Method                   | Analyte                       | Result | Units   | MRL   | Dilution |
|----------|----------------|------------------|-------------------|--------------------------|-------------------------------|--------|---------|-------|----------|
|          |                | EPA 300.0        | - Chloride, Su    | Ifate by EPA 300         | .0                            |        |         |       |          |
|          | 03/03/22 08:55 |                  | 1390875           | (EPA 300.0)              | Chloride                      | 2.3    | mg/L    | 1.0   | 2        |
|          | 03/03/22 08:55 |                  | 1390875           | (EPA 300.0)              | Sulfate                       | 130    | mg/L    | 1.0   | 2        |
|          |                | <b>EPA 218.6</b> | - Hexavalent C    | Chromium by 218          | 3.6                           |        |         |       |          |
|          | 03/14/22 12:54 |                  | 1393416           | (EPA 218.6)              | Hexavalent Chromium by 218.6  | 21     | ug/L    | 0.040 | 2        |
|          |                | SM4500-PE        | E/EPA 365.1 - 1   | Total phosphorus         | s as P (T-P)                  |        |         |       |          |
|          | 03/30/22 18:52 |                  | 1398116           | (SM4500-PE/EPA<br>365.1) | Total phosphorus as P         | 0.035  | mg/L    | 0.020 | 1        |
|          |                | SM 3500 - I      | lron, Ferric      |                          |                               |        |         |       |          |
|          | 04/05/22 00:39 |                  |                   | (SM 3500)                | Iron_Ferric                   | ND (J) | mg/L    | 0.5   | 1        |
|          |                | SM 3500 F        | e B - Iron, Ferr  | ous                      |                               |        |         |       |          |
|          | 03/07/22 23:00 |                  |                   | (SM 3500 Fe B)           | Iron_Ferrous                  | ND     | mg/L    | 0.1   | 1        |
|          |                | SM 4500F-        | C - Fluoride      |                          |                               |        |         |       |          |
|          | 03/14/22 17:30 |                  | 1393287           | (SM 4500F-C)             | Fluoride                      | 0.18   | mg/L    | 0.050 | 1        |
|          |                |                  | - Alkalinity in ( |                          |                               |        |         |       |          |
|          | 03/12/22 21:17 |                  | 1393441           | (SM 2320B)               | Alkalinity in CaCO3 units     | 170    | mg/L    | 2.0   | 1        |
|          |                |                  |                   | Dissolved Solids         | (TDS)                         |        |         |       |          |
| 03/08/22 | 03/09/22 00:25 | 1392170          | 1392172           | (E160.1/SM2540C)         | Total Dissolved Solids (TDS)  | 360    | mg/L    | 10    | 1        |
|          |                |                  |                   | st HT not compli         |                               |        |         |       |          |
|          | 03/12/22 21:17 |                  | 1393447           | (SM4500-HB)              | PH (H3=past HT not compliant) | 8.1    | Units   | 0.10  | 1        |
|          |                | EPA 180.1        | •                 |                          |                               |        |         |       |          |
|          | 03/03/22 09:15 |                  | 1390877           | (EPA 180.1)              | Turbidity                     | 1.9    | NTU     | 0.10  | 1        |
|          |                |                  | Specific Cond     |                          |                               |        |         |       |          |
|          | 03/12/22 21:17 |                  | 1393453           | (SM2510B)                | Specific Conductance, 25 C    | 570    | umho/cm | 10    | 1        |
|          |                |                  | - Apparent Co     |                          |                               |        |         |       |          |
|          | 03/03/22 11:35 |                  | 1391352           | (SM 2120B)               | Apparent Color                | ND     | ACU     | 3.0   | 1        |
|          |                | SM 4500P-        | -                 | phate as P (OPO          | •                             |        |         |       |          |
|          | 03/03/22 09:00 |                  | 1391737           | (SM 4500P-E)             | Orthophosphate as P           | 0.033  | mg/L    | 0.010 | 1        |

differences in final result than the component analyses.





1 800 566 LABS (1 800 566 5227)

**Report: 990476** 

**Project: WATER-QUALITY** 

**Group: JOB#310 DATA COLLECTION** 

Mojave Water Agency

Nitrate, Nitrite by EPA 300.0

Analytical Batch: 1390854

202203020945 ORMW-1

Chloride, Sulfate by EPA 300.0

Analytical Batch: 1390875

202203020945 ORMW-1

**Turbidity** 

Analytical Batch: 1390877

202203020945 ORMW-1

**Apparent Color** 

Analytical Batch: 1391352

202203020945 ORMW-1

Orthophosphate as P (OPO4)

Analytical Batch: 1391737

202203020945 ORMW-1

**ICP Metals** 

Prep Batch: 1391002 Analytical Batch: 1391800

202203020945 ORMW-1

**Total Dissolved Solids (TDS)** 

Prep Batch: 1392170 Analytical Batch: 1392172

202203020945 ORMW-1

**Fluoride** 

Analytical Batch: 1393287

202203020945 ORMW-1

**Hexavalent Chromium by 218.6** 

Analytical Batch: 1393416

202203020945 ORMW-1

Alkalinity in CaCO3 units

Analytical Batch: 1393441

202203020945 ORMW-1

PH (H3=past HT not compliant)

Analytical Batch: 1393447

202203020945 ORMW-1

**Specific Conductance** 

Analytical Batch: 1393453

202203020945 ORMW-1

**ICP Metals** 

Prep Batch: 1391002 Analytical Batch: 1394312

202203020945 ORMW-1 Analysis Date: 03/03/2022

Analyzed by: P6LW

Analysis Date: 03/03/2022

Analyzed by: P6LW

Analysis Date: 03/03/2022

Analyzed by: GP4S

Analysis Date: 03/03/2022

Analyzed by: ZYV7

Analysis Date: 03/03/2022

Analyzed by: ZYV7

Analysis Date: 03/08/2022

Analyzed by: LK6J

Analysis Date: 03/09/2022

Analyzed by: TJ52

Analysis Date: 03/14/2022

Analyzed by: D5MQ

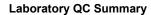
Analysis Date: 03/14/2022

Analyzed by: LMR

Analysis Date: 03/12/2022

Analyzed by: D5MQ

Analysis Date: 03/12/2022


Analyzed by: D5MQ

Analysis Date: 03/12/2022

Analyzed by: D5MQ

Analysis Date: 03/17/2022

Analyzed by: NINA





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

**Group: JOB#310 DATA COLLECTION** 

Analysis Date: 03/22/2022

Mojave Water Agency

**ICPMS Metals** 

Prep Batch: 1391002 Analytical Batch: 1394922

202203020945 ORMW-1 Analyzed by: LUPE

**Mercury ICPMS** 

Prep Batch: 1391002 Analytical Batch: 1394923 Analysis Date: 03/22/2022

202203020945 ORMW-1 Analyzed by: LUPE

Total phosphorus as P (T-P)

Analytical Batch: 1398116 Analysis Date: 03/30/2022

202203020945 ORMW-1 Analyzed by: LQ3M





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

### Mojave Water Agency

| QC Type                   | Analyte                   | Native | Spiked | Recovered | Units                     | Yield(%) | Limits (%) | RPD<br>Limit(%) | RPD% |  |
|---------------------------|---------------------------|--------|--------|-----------|---------------------------|----------|------------|-----------------|------|--|
| Nitrate, Nitrite by       | EPA 300.0 by EPA 300.0    |        |        |           |                           |          |            |                 |      |  |
| Analytical Batch: 1390854 |                           |        |        |           | Analysis Date: 03/03/2022 |          |            |                 |      |  |
| LCS1                      | Nitrate as Nitrogen by IC |        | 2.5    | 2.57      | mg/L                      | 103      | (90-110)   |                 |      |  |
| LCS2                      | Nitrate as Nitrogen by IC |        | 2.5    | 2.59      | mg/L                      | 104      | (90-110)   | 20              | 0.78 |  |
| MBLK                      | Nitrate as Nitrogen by IC |        |        | <0.0042   | mg/L                      |          |            |                 |      |  |
| MRL_CHK                   | Nitrate as Nitrogen by IC |        | 0.05   | 0.0533    | mg/L                      | 107      | (50-150)   |                 |      |  |
| MS_202203020948           | Nitrate as Nitrogen by IC | ND     | 1.3    | 1.43      | mg/L                      | 113      | (80-120)   |                 |      |  |
| MS_202203021118           | Nitrate as Nitrogen by IC | 5.3    | 1.3    | 8.00      | mg/L                      | 107      | (80-120)   |                 |      |  |
| MSD_202203020948          | Nitrate as Nitrogen by IC | ND     | 1.3    | 1.43      | mg/L                      | 113      | (80-120)   | 20              | 0.12 |  |
| MSD_202203021118          | Nitrate as Nitrogen by IC | 5.3    | 1.3    | 8.18      | mg/L                      | 113      | (80-120)   | 20              | 2.1  |  |
| LCS1                      | Nitrite Nitrogen by IC    |        | 1      | 1.07      | mg/L                      | 107      | (90-110)   |                 |      |  |
| LCS2                      | Nitrite Nitrogen by IC    |        | 1      | 1.08      | mg/L                      | 108      | (90-110)   | 20              | 0.93 |  |
| MBLK                      | Nitrite Nitrogen by IC    |        |        | <0.0050   | mg/L                      |          |            |                 |      |  |
| MRL_CHK                   | Nitrite Nitrogen by IC    |        | 0.05   | 0.0479    | mg/L                      | 96       | (50-150)   |                 |      |  |
| MS_202203020948           | Nitrite Nitrogen by IC    | ND     | 0.5    | 0.579     | mg/L                      | 115      | (80-120)   |                 |      |  |
| MS_202203021118           | Nitrite Nitrogen by IC    | ND     | 0.5    | 1.08      | mg/L                      | 108      | (80-120)   |                 |      |  |
| MSD_202203020948          | Nitrite Nitrogen by IC    | ND     | 0.5    | 0.581     | mg/L                      | 115      | (80-120)   | 20              | 0.31 |  |
| MSD_202203021118          | Nitrite Nitrogen by IC    | ND     | 0.5    | 1.13      | mg/L                      | 113      | (80-120)   | 20              | 4.9  |  |
| Chloride, Sulfate         | by EPA 300.0 by EPA 300.0 |        |        |           |                           |          |            |                 |      |  |
| Analytical Batch: 1390875 |                           |        |        |           | Analysis Date: 03/03/2022 |          |            |                 |      |  |
| LCS1                      | Chloride                  |        | 25     | 26.2      | mg/L                      | 105      | (90-110)   |                 |      |  |
| LCS2                      | Chloride                  |        | 25     | 26.3      | mg/L                      | 105      | (90-110)   | 20              | 0.38 |  |
| MBLK                      | Chloride                  |        | 20     | <0.1397   | mg/L                      | 100      | (00 110)   | 20              | 0.00 |  |
| MRL_CHK                   | Chloride                  |        | 0.5    | 0.508     | mg/L                      | 102      | (50-150)   |                 |      |  |
| MS_202203020948           | Chloride                  | 2.1    | 13     | 16.3      | mg/L                      | 113      | (80-120)   |                 |      |  |
| MS_202203140113           | Chloride                  | 52     | 13     | 79.1      | mg/L                      | 109      | (80-120)   |                 |      |  |
| MSD_202203020948          | Chloride                  | 2.1    | 13     | 16.4      | mg/L                      | 114      | (80-120)   | 20              | 0.64 |  |
| MSD 202203140113          | Chloride                  | 52     | 13     | 80.6      | mg/L                      | 115      | (80-120)   | 20              | 1.9  |  |
| LCS1                      | Sulfate                   |        | 50     | 51.4      | mg/L                      | 103      | (90-110)   |                 |      |  |
| LCS2                      | Sulfate                   |        | 50     | 51.8      | mg/L                      | 104      | (90-110)   | 20              | 0.58 |  |
| MBLK                      | Sulfate                   |        |        | <0.0614   | mg/L                      |          | , ,        |                 |      |  |
| MRL_CHK                   | Sulfate                   |        | 1      | 0.999     | mg/L                      | 100      | (50-150)   |                 |      |  |
| MRLLW                     | Sulfate                   |        | 0.25   | 0.189     | mg/L                      | 76       | (50-150)   |                 |      |  |
| MS_202203020948           | Sulfate                   | ND     | 25     | 27.8      | mg/L                      | 111      | (80-120)   |                 |      |  |
| _<br>MS_202203140113      | Sulfate                   | 130    | 25     | 181       | mg/L                      | 105      | (80-120)   |                 |      |  |
| _<br>MSD_202203020948     | Sulfate                   | ND     | 25     | 28.0      | mg/L                      | 111      | (80-120)   | 20              | 0.56 |  |
| MSD_202203140113          | Sulfate                   | 130    | 25     | 184       | mg/L                      | 111      | (80-120)   | 20              | 1.6  |  |
|                           |                           |        |        |           | -                         |          |            |                 |      |  |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used. RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

### Mojave Water Agency

| QC Type                   | Analyte                  | Native | Spiked | Recovered | Units                     | Yield(%)   | Limits (%)  | RPD<br>Limit(%) | RPD%  |  |  |
|---------------------------|--------------------------|--------|--------|-----------|---------------------------|------------|-------------|-----------------|-------|--|--|
| Turbidity by EPA          | 180.1                    |        |        |           |                           |            |             |                 |       |  |  |
| Analytical Batch: 1390877 |                          |        |        |           | Analysis Date: 03/03/2022 |            |             |                 |       |  |  |
| DUP1_202203021029         | Turbidity                | 0.25   |        | 1.03      | NTU                       |            | (0-20)      |                 |       |  |  |
| DUP2_202203021029         | Turbidity                | 0.25   |        | ND        | NTU                       |            | (0-20)      |                 |       |  |  |
| LCS1                      | Turbidity                |        | 20     | 18.7      | NTU                       | 94         | (90-110)    |                 |       |  |  |
| LCS2                      | Turbidity                |        | 20     | 18.5      | NTU                       | 93         | (90-110)    | 20              | 1.1   |  |  |
| MBLK                      | Turbidity                |        |        | <0.10     | NTU                       |            |             |                 |       |  |  |
| MRLHI                     | Turbidity                |        | 0.1    | 0.0870    | NTU                       | 87         | (50-150)    |                 |       |  |  |
| Apparent Color by         | / SM 2120B               |        |        |           |                           |            |             |                 |       |  |  |
| Analytical Batch: 1391352 |                          |        |        |           | Analysis Date: 03/03/2022 |            |             |                 |       |  |  |
| DUP1_202203020306         | Apparent Color           | ND     |        | ND        | ACU                       |            | (0-20)      |                 |       |  |  |
| DUP2_202203020315         | Apparent Color           | ND     |        | ND        | ACU                       |            | (0-20)      |                 |       |  |  |
| MBLK                      | Apparent Color           |        |        | <0.5      | ACU                       |            |             |                 |       |  |  |
| Orthophosphate a          | s P (OPO4) by SM 4500P-E |        |        |           |                           |            |             |                 |       |  |  |
|                           | atch: 1391737            |        |        |           |                           | Analysis D | ate: 03/03/ | 2022            |       |  |  |
| LCS1                      | Orthophosphate as P      |        | 0.25   | 0.227     | mg/L                      | 91         | (90-110)    |                 |       |  |  |
| LCS2                      | Orthophosphate as P      |        | 0.25   | 0.230     | mg/L                      | 92         | (90-110)    | 20              | 1.3   |  |  |
| MBLK                      | Orthophosphate as P      |        |        | <0.005    | mg/L                      |            |             |                 |       |  |  |
| MRL_CHK                   | Orthophosphate as P      |        | 0.01   | 0.00700   | mg/L                      | 70         | (50-150)    |                 |       |  |  |
| MS_202203021026           | Orthophosphate as P      | 0.19   | 0.5    | 0.653     | mg/L                      | 92         | (90-110)    |                 |       |  |  |
| MS2_202203021043          | Orthophosphate as P      | 0.011  | 0.5    | 0.449     | mg/L                      | <u>88</u>  | (90-110)    |                 |       |  |  |
| MSD_202203021026          | Orthophosphate as P      | 0.19   | 0.5    | 0.645     | mg/L                      | 90         | (90-110)    | 20              | 1.2   |  |  |
| MSD2_202203021043         | Orthophosphate as P      | 0.011  | 0.5    | 0.446     | mg/L                      | <u>87</u>  | (90-110)    | 20              | 0.67  |  |  |
| ICP Metals by EPA         | A 200.7                  |        |        |           |                           |            |             |                 |       |  |  |
| Analytical Batch: 1391800 |                          |        |        |           | Analysis Date: 03/08/2022 |            |             |                 |       |  |  |
| LCS1                      | Calcium Total ICAP       |        | 50     | 50.5      | mg/L                      | 101        | (85-115)    |                 |       |  |  |
| LCS2                      | Calcium Total ICAP       |        | 50     | 51.8      | mg/L                      | 104        | (85-115)    | 20              | 2.5   |  |  |
| MBLK                      | Calcium Total ICAP       |        |        | <0.043087 | mg/L                      |            |             |                 |       |  |  |
| MRL_CHK                   | Calcium Total ICAP       |        | 1      | 1.04      | mg/L                      | 104        | (50-150)    |                 |       |  |  |
| MS_202203021018           | Calcium Total ICAP       | 7.9    | 50     | 58.7      | mg/L                      | 101        | (70-130)    |                 |       |  |  |
| MS2_202203040295          | Calcium Total ICAP       | 62     | 50     | 111       | mg/L                      | 98         | (70-130)    |                 |       |  |  |
| MSD_202203021018          | Calcium Total ICAP       | 7.9    | 50     | 59.1      | mg/L                      | 102        | (70-130)    | 20              | 0.72  |  |  |
| MSD2_202203040295         | Calcium Total ICAP       | 62     | 50     | 111       | mg/L                      | 98         | (70-130)    | 20              | 0.030 |  |  |
| LCS1                      | Iron Total ICAP          |        | 5      | 5.06      | mg/L                      | 101        | (85-115)    |                 |       |  |  |
| LCS2                      | Iron Total ICAP          |        | 5      | 5.16      | mg/L                      | 103        | (85-115)    | 20              | 2.1   |  |  |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used.
RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type                   | Analyte                       | Native | Spiked | Recovered | Units | Yield(%)  | Limits (%)  | RPD<br>Limit(%) | RPD% |
|---------------------------|-------------------------------|--------|--------|-----------|-------|-----------|-------------|-----------------|------|
| MBLK                      | Iron Total ICAP               |        |        | <0.004850 | mg/L  |           |             |                 |      |
| MRL_CHK                   | Iron Total ICAP               |        | 0.01   | 0.0111    | mg/L  | 111       | (50-150)    |                 |      |
| MS_202203021018           | Iron Total ICAP               | ND     | 5      | 5.15      | mg/L  | 103       | (70-130)    |                 |      |
| MS2_202203040295          | Iron Total ICAP               | 0.011  | 5      | 5.21      | mg/L  | 104       | (70-130)    |                 |      |
| MSD_202203021018          | Iron Total ICAP               | ND     | 5      | 5.19      | mg/L  | 104       | (70-130)    | 20              | 0.69 |
| MSD2_202203040295         | Iron Total ICAP               | 0.011  | 5      | 5.26      | mg/L  | 105       | (70-130)    | 20              | 0.88 |
| LCS1                      | Magnesium Total ICAP          |        | 20     | 19.9      | mg/L  | 100       | (85-115)    |                 |      |
| LCS2                      | Magnesium Total ICAP          |        | 20     | 20.3      | mg/L  | 102       | (85-115)    | 20              | 2.0  |
| MBLK                      | Magnesium Total ICAP          |        |        | <0.009606 | mg/L  |           |             |                 |      |
| MRL_CHK                   | Magnesium Total ICAP          |        | 0.1    | 0.0991    | mg/L  | 99        | (50-150)    |                 |      |
| MS_202203021018           | Magnesium Total ICAP          | 1.4    | 20     | 21.8      | mg/L  | 102       | (70-130)    |                 |      |
| MS2_202203040295          | Magnesium Total ICAP          | 29     | 20     | 49.4      | mg/L  | 100       | (70-130)    |                 |      |
| MSD_202203021018          | Magnesium Total ICAP          | 1.4    | 20     | 22.0      | mg/L  | 103       | (70-130)    | 20              | 0.91 |
| MSD2_202203040295         | Magnesium Total ICAP          | 29     | 20     | 49.5      | mg/L  | 100       | (70-130)    | 20              | 0.26 |
| LCS1                      | Potassium Total ICAP          |        | 20     | 20.2      | mg/L  | 101       | (85-115)    |                 |      |
| LCS2                      | Potassium Total ICAP          |        | 20     | 20.6      | mg/L  | 103       | (85-115)    | 20              | 2.0  |
| MBLK                      | Potassium Total ICAP          |        |        | <0.233312 | mg/L  |           |             |                 |      |
| MRL_CHK                   | Potassium Total ICAP          |        | 1      | 0.732     | mg/L  | 73        | (50-150)    |                 |      |
| MS_202203021018           | Potassium Total ICAP          | ND     | 20     | 21.4      | mg/L  | 106       | (70-130)    |                 |      |
| MS2_202203040295          | Potassium Total ICAP          | 6.4    | 20     | 28.6      | mg/L  | 111       | (70-130)    |                 |      |
| MSD_202203021018          | Potassium Total ICAP          | ND     | 20     | 21.7      | mg/L  | 107       | (70-130)    | 20              | 1.3  |
| MSD2_202203040295         | Potassium Total ICAP          | 6.4    | 20     | 28.7      | mg/L  | 112       | (70-130)    | 20              | 0.35 |
| LCS1                      | Sodium Total ICAP             |        | 50     | 49.8      | mg/L  | 100       | (85-115)    |                 |      |
| LCS2                      | Sodium Total ICAP             |        | 50     | 50.9      | mg/L  | 102       | (85-115)    | 20              | 2.2  |
| MBLK                      | Sodium Total ICAP             |        |        | <0.4255   | mg/L  |           |             |                 |      |
| MRL_CHK                   | Sodium Total ICAP             |        | 1      | 1.07      | mg/L  | 107       | (50-150)    |                 |      |
| MS_202203021018           | Sodium Total ICAP             | ND     | 50     | 51.1      | mg/L  | 101       | (70-130)    |                 |      |
| MS2_202203040295          | Sodium Total ICAP             | 59     | 50     | 107       | mg/L  | 95        | (70-130)    |                 |      |
| MSD_202203021018          | Sodium Total ICAP             | ND     | 50     | 51.8      | mg/L  | 102       | (70-130)    | 20              | 1.3  |
| MSD2_202203040295         | Sodium Total ICAP             | 59     | 50     | 107       | mg/L  | 95        | (70-130)    | 20              | 0.18 |
| Total Dissolved So        | olids (TDS) by E160.1/SM2540C |        |        |           |       |           |             |                 |      |
| Analytical Batch: 1392172 |                               |        |        |           | A     | nalysis D | ate: 03/09/ | 2022            |      |
| DUP_202203020945          | Total Dissolved Solid (TDS)   | 360    |        | 360       | mg/L  |           | (0-10)      | 10              | 0.55 |
| DUP_202203030538          | Total Dissolved Solid (TDS)   | 370    |        | 370       | mg/L  |           | (0-10)      | 10              | 0.54 |
| LCS1                      | Total Dissolved Solid (TDS)   |        | 175    | 174       | mg/L  | 99        | (80-114)    |                 |      |
| LCS2                      | Total Dissolved Solid (TDS)   |        | 700    | 688       | mg/L  | 98        | (80-114)    |                 |      |
| MBLK                      | Total Dissolved Solid (TDS)   |        |        | <5        | mg/L  |           |             |                 |      |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type            | Analyte                       | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%)  | RPD<br>Limit(%) | RPD%  |
|--------------------|-------------------------------|--------|--------|-----------|-------|------------|-------------|-----------------|-------|
| MRL_CHK            | Total Dissolved Solid (TDS)   |        | 10     | 9.00      | mg/L  | 90         | (50-150)    |                 |       |
| Fluoride by SM 45  | 500F-C                        |        |        |           |       |            |             |                 |       |
| Analytical B       | Batch: 1393287                |        |        |           | ,     | Analysis D | ate: 03/14/ | 2022            |       |
| LCS1               | Fluoride                      |        | 1      | 1.01      | mg/L  | 101        | (90-110)    |                 |       |
| LCS2               | Fluoride                      |        | 1      | 1.02      | mg/L  | 102        | (90-110)    | 20              | 0.99  |
| MBLK               | Fluoride                      |        |        | <0.025    | mg/L  |            |             |                 |       |
| MRL_CHK            | Fluoride                      |        | 0.05   | 0.0484    | mg/L  | 97         | (50-150)    |                 |       |
| MS_202203010664    | Fluoride                      | 0.43   | 1      | 1.42      | mg/L  | 99         | (80-120)    |                 |       |
| MS_202203010780    | Fluoride                      | ND     | 1      | 0.978     | mg/L  | 97         | (80-120)    |                 |       |
| MSD_202203010664   | Fluoride                      | 0.43   | 1      | 1.42      | mg/L  | 100        | (80-120)    | 20              | 0.30  |
| MSD_202203010780   | Fluoride                      | ND     | 1      | 0.984     | mg/L  | 98         | (80-120)    | 20              | 0.62  |
| Hexavalent Chron   | nium by 218.6 by EPA 218.6    |        |        |           |       |            |             |                 |       |
| Analytical B       | Batch: 1393416                |        |        |           |       | Analysis D | ate: 03/14/ | 2022            |       |
| LCS1               | Hexavalent Chromium by 218.6  |        | 2      | 1.87      | ug/L  | 94         | (90-110)    |                 |       |
| LCS2               | Hexavalent Chromium by 218.6  |        | 2      | 1.92      | ug/L  | 96         | (90-110)    | 10              | 2.6   |
| MBLK               | Hexavalent Chromium by 218.6  |        |        | <0.01     | ug/L  |            |             |                 |       |
| MRL_CHK            | Hexavalent Chromium by 218.6  |        | 0.02   | 0.0135    | ug/L  | 68         | (50-150)    |                 |       |
| MS_202203100542    | Hexavalent Chromium by 218.6  | 5.0    | 2      | 6.93      | ug/L  | 98         | (90-110)    |                 |       |
| MS_202203161264    | Hexavalent Chromium by 218.6  | 0.041  | 2      | 2.05      | ug/L  | 100        | (90-110)    |                 |       |
| MSD_202203100542   | Hexavalent Chromium by 218.6  | 5.0    | 2      | 6.96      | ug/L  | 100        | (90-110)    | 15              | 0.44  |
| MSD_202203161264   | Hexavalent Chromium by 218.6  | 0.041  | 2      | 2.05      | ug/L  | 100        | (90-110)    | 15              | 0.18  |
| Alkalinity in CaCC | O3 units by SM 2320B          |        |        |           |       |            |             |                 |       |
| Analytical B       | Batch: 1393441                |        |        |           | ,     | Analysis D | ate: 03/12/ | 2022            |       |
| LCS1               | Alkalinity in CaCO3 units     |        | 100    | 98.4      | mg/L  | 98         | (90-110)    |                 |       |
| LCS2               | Alkalinity in CaCO3 units     |        | 100    | 98.1      | mg/L  | 98         | (90-110)    | 20              | 0.31  |
| MBLK               | Alkalinity in CaCO3 units     |        |        | <1        | mg/L  |            |             |                 |       |
| MRL_CHK            | Alkalinity in CaCO3 units     |        | 2      | 2.09      | mg/L  | 105        | (50-150)    |                 |       |
| MS_202203020941    | Alkalinity in CaCO3 units     | 170    | 100    | 199       | mg/L  | <u>33</u>  | (80-120)    |                 |       |
| MS_202203020948    | Alkalinity in CaCO3 units     | 25     | 100    | 126       | mg/L  | 100        | (80-120)    |                 |       |
| MSD_202203020941   | Alkalinity in CaCO3 units     | 170    | 100    | 199       | mg/L  | <u>33</u>  | (80-120)    | 20              | 0.075 |
| MSD_202203020948   | Alkalinity in CaCO3 units     | 25     | 100    | 125       | mg/L  | 99         | (80-120)    | 20              | 0.46  |
| PH (H3=past HT n   | ot compliant) by SM4500-HB    |        |        |           |       |            |             |                 |       |
|                    | Batch: 1393447                |        |        |           | ,     | Analysis D | ate: 03/12/ | 2022            |       |
| DUP_202203020941   | PH (H3=past HT not compliant) | 8.2    |        | 8.19      | Units |            | (0-20)      | 20              | 0.37  |
|                    | (                             | V.=    |        |           |       |            |             |                 |       |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.



RPD



Tel: (626) 386-1100 Fax: (866) 988-3757

1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                       | Native | Spiked | Recovered | Units   | Yield(%)  | Limits (%)  | RPD<br>Limit(%) | RPD% |
|-------------------|-------------------------------|--------|--------|-----------|---------|-----------|-------------|-----------------|------|
| LCS1              | PH (H3=past HT not compliant) |        | 6      | 6.00      | Units   | 100       | (98-102)    |                 |      |
| LCS2              | PH (H3=past HT not compliant) |        | 6      | 6.00      | Units   | 100       | (98-102)    | 20              | 0.0  |
| Specific Conducta | ance by SM2510B               |        |        |           |         |           |             |                 |      |
| Analytical B      | atch: 1393453                 |        |        |           | Aı      | nalysis D | ate: 03/12/ | 2022            |      |
| DUP1_202203020941 | Specific Conductance          | 360    |        | 356       | umho/cm |           | (0-20)      | 20              | 1.8  |
| DUP1_202203020948 | Specific Conductance          | 59     |        | 59.0      | umho/cm |           | (0-20)      | 20              | 0.0  |
| LCS1              | Specific Conductance          |        | 1000   | 964       | umho/cm | 97        | (90-110)    |                 |      |
| LCS2              | Specific Conductance          |        | 1000   | 958       | umho/cm | 96        | (90-110)    | 20              | 0.73 |
| MBLK              | Specific Conductance          |        |        | <1        | umho/cm |           |             |                 |      |
| MRLHI             | Specific Conductance          |        | 10     | 10.0      | umho/cm | 100       | (50-150)    |                 |      |
| ICP Metals by EPA | A 200.7                       |        |        |           |         |           |             |                 |      |
| Analytical B      | atch: 1394312                 |        |        |           | Aı      | nalysis D | ate: 03/17/ | 2022            |      |
| LCS1              | Boron Dissolved ICAP          |        | 0.5    | 0.508     | mg/L    | 102       | (85-115)    |                 |      |
| LCS2              | Boron Dissolved ICAP          |        | 0.5    | 0.504     | mg/L    | 101       | (85-115)    | 20              | 0.79 |
| MBLK              | Boron Dissolved ICAP          |        |        | <0.007140 | mg/L    |           |             |                 |      |
| MRL_CHK           | Boron Dissolved ICAP          |        | 0.05   | 0.0515    | mg/L    | 103       | (50-150)    |                 |      |
| MS_202203161203   | Boron Dissolved ICAP          | 0.51   | 0.5    | 1.01      | mg/L    | 99        | (70-130)    |                 |      |
| MS2_202203150481  | Boron Dissolved ICAP          | 0.39   | 0.5    | 0.907     | mg/L    | 104       | (70-130)    |                 |      |
| MSD_202203161203  | Boron Dissolved ICAP          | 0.51   | 0.5    | 1.03      | mg/L    | 104       | (70-130)    | 20              | 2.2  |
| MSD2_202203150481 | Boron Dissolved ICAP          | 0.39   | 0.5    | 0.909     | mg/L    | 104       | (70-130)    | 20              | 0.20 |
| LCS1              | Calcium Dissolved ICAP        |        | 50     | 51.0      | mg/L    | 102       | (85-115)    |                 |      |
| LCS2              | Calcium Dissolved ICAP        |        | 50     | 50.8      | mg/L    | 102       | (85-115)    | 20              | 0.59 |
| MBLK              | Calcium Dissolved ICAP        |        |        | <0.043087 | mg/L    |           |             |                 |      |
| MRL_CHK           | Calcium Dissolved ICAP        |        | 1      | 1.05      | mg/L    | 105       | (50-150)    |                 |      |
| MS_202203161203   | Calcium Dissolved ICAP        | 59     | 50     | 106       | mg/L    | 93        | (70-130)    |                 |      |
| MS2_202203150481  | Calcium Dissolved ICAP        | 2.4    | 50     | 53.7      | mg/L    | 103       | (70-130)    |                 |      |
| MSD_202203161203  | Calcium Dissolved ICAP        | 59     | 50     | 108       | mg/L    | 97        | (70-130)    | 20              | 2.0  |
| MSD2_202203150481 | Calcium Dissolved ICAP        | 2.4    | 50     | 53.4      | mg/L    | 102       | (70-130)    | 20              | 0.49 |
| LCS1              | Calcium Total ICAP            |        | 50     | 51.0      | mg/L    | 102       | (85-115)    |                 |      |
| LCS2              | Calcium Total ICAP            |        | 50     | 50.8      | mg/L    | 102       | (85-115)    | 20              | 0.59 |
| MBLK              | Calcium Total ICAP            |        |        | <0.043087 | mg/L    |           |             |                 |      |
| MRL_CHK           | Calcium Total ICAP            |        | 1      | 1.05      | mg/L    | 105       | (50-150)    |                 |      |
| MS_202203161203   | Calcium Total ICAP            | 59     | 50     | 106       | mg/L    | 93        | (70-130)    |                 |      |
| MS2_202203150481  | Calcium Total ICAP            | 2.4    | 50     | 53.7      | mg/L    | 103       | (70-130)    |                 |      |
| MSD_202203161203  | Calcium Total ICAP            | 59     | 50     | 108       | mg/L    | 97        | (70-130)    | 20              | 2.0  |
| MSD2_202203150481 | Calcium Total ICAP            | 2.4    | 50     | 53.4      | mg/L    | 102       | (70-130)    | 20              | 0.49 |
| LCS1              | Dissolved Silica              |        | 21     | 20.6      | mg/L    | 96        | (85-115)    |                 |      |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type               | Analyte                  | Native | Spiked | Recovered | Units | Yield(%) | Limits (%) | RPD<br>Limit(%) | RPD% |
|-----------------------|--------------------------|--------|--------|-----------|-------|----------|------------|-----------------|------|
| LCS2                  | Dissolved Silica         |        | 21     | 20.5      | mg/L  | 96       | (85-115)   | 20              | 0.49 |
| MBLK                  | Dissolved Silica         |        |        | <0.035638 | mg/L  |          |            |                 |      |
| MRL_CHK               | Dissolved Silica         |        | 0.42   | 0.450     | mg/L  | 107      | (50-150)   |                 |      |
| MS_202203161203       | Dissolved Silica         | 18     | 21     | 38.6      | mg/L  | 94       | (70-130)   |                 |      |
| MS2_202203150481      | Dissolved Silica         | 2.2    | 21     | 23.3      | mg/L  | 99       | (70-130)   |                 |      |
| MSD_202203161203      | Dissolved Silica         | 18     | 21     | 39.5      | mg/L  | 98       | (70-130)   | 20              | 2.3  |
| MSD2_202203150481     | Dissolved Silica         | 2.2    | 21     | 23.3      | mg/L  | 98       | (70-130)   | 20              | 0.13 |
| LCS1                  | Iron Dissolved ICAP      |        | 5      | 5.14      | mg/L  | 103      | (85-115)   |                 |      |
| LCS2                  | Iron Dissolved ICAP      |        | 5      | 5.10      | mg/L  | 102      | (85-115)   | 20              | 0.78 |
| MBLK                  | Iron Dissolved ICAP      |        |        | <0.004850 | mg/L  |          |            |                 |      |
| MRL_CHK               | Iron Dissolved ICAP      |        | 0.01   | 0.0108    | mg/L  | 108      | (50-150)   |                 |      |
| MS_202203161203       | Iron Dissolved ICAP      | ND     | 5      | 5.06      | mg/L  | 101      | (70-130)   |                 |      |
| MS2_202203150481      | Iron Dissolved ICAP      | ND     | 5      | 5.19      | mg/L  | 104      | (70-130)   |                 |      |
| MSD_202203161203      | Iron Dissolved ICAP      | ND     | 5      | 5.22      | mg/L  | 104      | (70-130)   | 20              | 3.1  |
| MSD2_202203150481     | Iron Dissolved ICAP      | ND     | 5      | 5.15      | mg/L  | 103      | (70-130)   | 20              | 0.77 |
| LCS1                  | Iron Total ICAP          |        | 5      | 5.14      | mg/L  | 103      | (85-115)   |                 |      |
| LCS2                  | Iron Total ICAP          |        | 5      | 5.10      | mg/L  | 102      | (85-115)   | 20              | 0.78 |
| MBLK                  | Iron Total ICAP          |        |        | <0.004850 | mg/L  |          |            |                 |      |
| MRL_CHK               | Iron Total ICAP          |        | 0.01   | 0.0108    | mg/L  | 108      | (50-150)   |                 |      |
| MS_202203161203       | Iron Total ICAP          | ND     | 5      | 5.06      | mg/L  | 101      | (70-130)   |                 |      |
| MS2_202203150481      | Iron Total ICAP          | ND     | 5      | 5.19      | mg/L  | 104      | (70-130)   |                 |      |
| MSD_202203161203      | Iron Total ICAP          | ND     | 5      | 5.22      | mg/L  | 104      | (70-130)   | 20              | 3.1  |
| MSD2_202203150481     | Iron Total ICAP          | ND     | 5      | 5.15      | mg/L  | 103      | (70-130)   | 20              | 0.77 |
| LCS1                  | Magnesium Dissolved ICAP |        | 20     | 20.3      | mg/L  | 102      | (85-115)   |                 |      |
| LCS2                  | Magnesium Dissolved ICAP |        | 20     | 20.1      | mg/L  | 101      | (85-115)   | 20              | 0.99 |
| MBLK                  | Magnesium Dissolved ICAP |        |        | <0.009606 | mg/L  |          |            |                 |      |
| MRL_CHK               | Magnesium Dissolved ICAP |        | 0.1    | 0.102     | mg/L  | 102      | (50-150)   |                 |      |
| MS_202203161203       | Magnesium Dissolved ICAP | 16     | 20     | 36.0      | mg/L  | 98       | (70-130)   |                 |      |
| MS2_202203150481      | Magnesium Dissolved ICAP | 0.57   | 20     | 21.4      | mg/L  | 104      | (70-130)   |                 |      |
| MSD_202203161203      | Magnesium Dissolved ICAP | 16     | 20     | 36.9      | mg/L  | 102      | (70-130)   | 20              | 2.4  |
| MSD2_202203150481     | Magnesium Dissolved ICAP | 0.57   | 20     | 21.2      | mg/L  | 103      | (70-130)   | 20              | 0.78 |
| LCS1                  | Magnesium Total ICAP     |        | 20     | 20.3      | mg/L  | 102      | (85-115)   |                 |      |
| LCS2                  | Magnesium Total ICAP     |        | 20     | 20.1      | mg/L  | 101      | (85-115)   | 20              | 0.99 |
| MBLK                  | Magnesium Total ICAP     |        |        | <0.009606 | mg/L  |          |            |                 |      |
| MRL_CHK               | Magnesium Total ICAP     |        | 0.1    | 0.102     | mg/L  | 102      | (50-150)   |                 |      |
| MS_202203161203       | Magnesium Total ICAP     | 16     | 20     | 36.0      | mg/L  | 98       | (70-130)   |                 |      |
| _<br>MS2_202203150481 | Magnesium Total ICAP     | 0.57   | 20     | 21.4      | mg/L  | 104      | (70-130)   |                 |      |
| MSD_202203161203      | Magnesium Total ICAP     | 16     | 20     | 36.9      | mg/L  | 102      | (70-130)   | 20              | 2.4  |
|                       | -                        |        |        |           | 5     |          | ,,         |                 |      |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                  | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%)  | RPD<br>Limit(%) | RPD% |
|-------------------|--------------------------|--------|--------|-----------|-------|------------|-------------|-----------------|------|
| MSD2_202203150481 | Magnesium Total ICAP     | 0.57   | 20     | 21.2      | mg/L  | 103        | (70-130)    | 20              | 0.78 |
| LCS1              | Potassium Dissolved ICAP |        | 20     | 21.0      | mg/L  | 105        | (85-115)    |                 |      |
| LCS2              | Potassium Dissolved ICAP |        | 20     | 20.8      | mg/L  | 104        | (85-115)    | 20              | 0.96 |
| MBLK              | Potassium Dissolved ICAP |        |        | <0.233312 | mg/L  |            |             |                 |      |
| MRL_CHK           | Potassium Dissolved ICAP |        | 1      | 0.808     | mg/L  | 81         | (50-150)    |                 |      |
| MS_202203161203   | Potassium Dissolved ICAP | 14     | 20     | 35.8      | mg/L  | 109        | (70-130)    |                 |      |
| MS2_202203150481  | Potassium Dissolved ICAP | ND     | 20     | 22.6      | mg/L  | 111        | (70-130)    |                 |      |
| MSD_202203161203  | Potassium Dissolved ICAP | 14     | 20     | 36.7      | mg/L  | 114        | (70-130)    | 20              | 2.6  |
| MSD2_202203150481 | Potassium Dissolved ICAP | ND     | 20     | 22.4      | mg/L  | 110        | (70-130)    | 20              | 0.82 |
| LCS1              | Potassium Total ICAP     |        | 20     | 21.0      | mg/L  | 105        | (85-115)    |                 |      |
| LCS2              | Potassium Total ICAP     |        | 20     | 20.8      | mg/L  | 104        | (85-115)    | 20              | 0.96 |
| MBLK              | Potassium Total ICAP     |        |        | <0.233312 | mg/L  |            |             |                 |      |
| MRL_CHK           | Potassium Total ICAP     |        | 1      | 0.808     | mg/L  | 81         | (50-150)    |                 |      |
| MS_202203161203   | Potassium Total ICAP     | 14     | 20     | 35.8      | mg/L  | 109        | (70-130)    |                 |      |
| MS2_202203150481  | Potassium Total ICAP     | ND     | 20     | 22.6      | mg/L  | 111        | (70-130)    |                 |      |
| MSD_202203161203  | Potassium Total ICAP     | 14     | 20     | 36.7      | mg/L  | 114        | (70-130)    | 20              | 2.6  |
| MSD2_202203150481 | Potassium Total ICAP     | ND     | 20     | 22.4      | mg/L  | 110        | (70-130)    | 20              | 0.82 |
| LCS1              | Sodium Dissolved ICAP    |        | 50     | 51.5      | mg/L  | 103        | (85-115)    |                 |      |
| LCS2              | Sodium Dissolved ICAP    |        | 50     | 50.4      | mg/L  | 101        | (85-115)    | 20              | 2.0  |
| MBLK              | Sodium Dissolved ICAP    |        |        | <0.4255   | mg/L  |            |             |                 |      |
| MRL_CHK           | Sodium Dissolved ICAP    |        | 1      | 0.871     | mg/L  | 87         | (50-150)    |                 |      |
| MS_202203161203   | Sodium Dissolved ICAP    | 130    | 50     | 175       | mg/L  | 81         | (70-130)    |                 |      |
| MS2_202203150481  | Sodium Dissolved ICAP    | 19     | 50     | 69.4      | mg/L  | 100        | (70-130)    |                 |      |
| MSD_202203161203  | Sodium Dissolved ICAP    | 130    | 50     | 178       | mg/L  | 87         | (70-130)    | 20              | 2.1  |
| MSD2_202203150481 | Sodium Dissolved ICAP    | 19     | 50     | 69.0      | mg/L  | 100        | (70-130)    | 20              | 0.47 |
| LCS1              | Sodium Total ICAP        |        | 50     | 51.5      | mg/L  | 103        | (85-115)    |                 |      |
| LCS2              | Sodium Total ICAP        |        | 50     | 50.4      | mg/L  | 101        | (85-115)    | 20              | 2.0  |
| MBLK              | Sodium Total ICAP        |        |        | <0.4255   | mg/L  |            |             |                 |      |
| MRL_CHK           | Sodium Total ICAP        |        | 1      | 0.871     | mg/L  | 87         | (50-150)    |                 |      |
| MS_202203161203   | Sodium Total ICAP        | 130    | 50     | 175       | mg/L  | 81         | (70-130)    |                 |      |
| MS2_202203150481  | Sodium Total ICAP        | 19     | 50     | 69.4      | mg/L  | 100        | (70-130)    |                 |      |
| MSD_202203161203  | Sodium Total ICAP        | 130    | 50     | 178       | mg/L  | 87         | (70-130)    | 20              | 2.1  |
| MSD2_202203150481 | Sodium Total ICAP        | 19     | 50     | 69.0      | mg/L  | 100        | (70-130)    | 20              | 0.47 |
| ICPMS Metals by   | EPA 200.8                |        |        |           |       |            |             |                 |      |
| Analytical B      | atch: 1394922            |        |        |           |       | Analysis D | ate: 03/22/ | /2022           |      |
|                   |                          |        |        |           |       |            |             |                 |      |

| LCS1 | Aluminum dissolved ICAP/MS | 100 | 102 | ug/L | 103 | (85-115) |    |      |
|------|----------------------------|-----|-----|------|-----|----------|----|------|
| LCS2 | Aluminum dissolved ICAP/MS | 100 | 102 | ug/L | 102 | (85-115) | 20 | 0.98 |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                     | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%) | RPD<br>Limit(%) | RPD%      |
|-------------------|-----------------------------|--------|--------|-----------|-------|------------|------------|-----------------|-----------|
| MBLK              | Aluminum dissolved ICAP/MS  |        |        | <10.93    | ug/L  |            |            |                 |           |
| MBLK              | Aluminum dissolved ICAP/MS  |        |        | <10.93    | ug/L  |            |            |                 |           |
| MRL_CHK           | Aluminum dissolved ICAP/MS  |        | 20     | 20.7      | ug/L  | 103        | (50-150)   |                 |           |
| MS_202203080079   | Aluminum dissolved ICAP/MS  | ND     | 100    | 103       | ug/L  | 102        | (70-130)   |                 |           |
| MS2_202203141074  | Aluminum dissolved ICAP/MS  | ND     | 100    | 142       | ug/L  | <u>141</u> | (70-130)   |                 |           |
| MSD_202203080079  | Aluminum dissolved ICAP/MS  | ND     | 100    | 106       | ug/L  | 104        | (70-130)   | 20              | 2.8       |
| MSD2_202203141074 | Aluminum dissolved ICAP/MS  | ND     | 100    | 104       | ug/L  | 102        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Antimony dissolved ICAP/MS  |        | 50     | 53.6      | ug/L  | 107        | (85-115)   |                 |           |
| LCS2              | Antimony dissolved ICAP/MS  |        | 50     | 54.0      | ug/L  | 108        | (85-115)   | 20              | 0.74      |
| MBLK              | Antimony dissolved ICAP/MS  |        |        | <0.2437   | ug/L  |            |            |                 |           |
| MBLK              | Antimony dissolved ICAP/MS  |        |        | <0.2437   | ug/L  |            |            |                 |           |
| MRL_CHK           | Antimony dissolved ICAP/MS  |        | 1      | 1.08      | ug/L  | 108        | (50-150)   |                 |           |
| MS_202203080079   | Antimony dissolved ICAP/MS  | ND     | 50     | 54.0      | ug/L  | 108        | (70-130)   |                 |           |
| MS2_202203141074  | Antimony dissolved ICAP/MS  | ND     | 50     | 74.4      | ug/L  | <u>148</u> | (70-130)   |                 |           |
| MSD_202203080079  | Antimony dissolved ICAP/MS  | ND     | 50     | 54.2      | ug/L  | 108        | (70-130)   | 20              | 0.28      |
| MSD2_202203141074 | Antimony dissolved ICAP/MS  | ND     | 50     | 53.3      | ug/L  | 106        | (70-130)   | 20              | <u>33</u> |
| LCS1              | Arsenic dissolved ICAP/MS   |        | 50     | 52.2      | ug/L  | 104        | (85-115)   |                 |           |
| LCS2              | Arsenic dissolved ICAP/MS   |        | 50     | 51.9      | ug/L  | 104        | (85-115)   | 20              | 0.58      |
| MBLK              | Arsenic dissolved ICAP/MS   |        |        | <0.4134   | ug/L  |            |            |                 |           |
| MBLK              | Arsenic dissolved ICAP/MS   |        |        | <0.4134   | ug/L  |            |            |                 |           |
| MRL_CHK           | Arsenic dissolved ICAP/MS   |        | 1      | 1.20      | ug/L  | 120        | (50-150)   |                 |           |
| MS_202203080079   | Arsenic dissolved ICAP/MS   | ND     | 50     | 52.0      | ug/L  | 104        | (70-130)   |                 |           |
| MS2_202203141074  | Arsenic dissolved ICAP/MS   | ND     | 50     | 72.3      | ug/L  | <u>145</u> | (70-130)   |                 |           |
| MSD_202203080079  | Arsenic dissolved ICAP/MS   | ND     | 50     | 52.5      | ug/L  | 105        | (70-130)   | 20              | 1.0       |
| MSD2_202203141074 | Arsenic dissolved ICAP/MS   | ND     | 50     | 52.8      | ug/L  | 106        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Barium dissolved ICAP/MS    |        | 50     | 51.6      | ug/L  | 103        | (85-115)   |                 |           |
| LCS2              | Barium dissolved ICAP/MS    |        | 50     | 51.8      | ug/L  | 104        | (85-115)   | 20              | 0.39      |
| MBLK              | Barium dissolved ICAP/MS    |        |        | <0.1886   | ug/L  |            |            |                 |           |
| MBLK              | Barium dissolved ICAP/MS    |        |        | <0.1886   | ug/L  |            |            |                 |           |
| MRL_CHK           | Barium dissolved ICAP/MS    |        | 2      | 2.02      | ug/L  | 101        | (50-150)   |                 |           |
| MS_202203080079   | Barium dissolved ICAP/MS    | ND     | 50     | 51.4      | ug/L  | 102        | (70-130)   |                 |           |
| MS2_202203141074  | Barium dissolved ICAP/MS    | ND     | 50     | 71.5      | ug/L  | <u>142</u> | (70-130)   |                 |           |
| MSD_202203080079  | Barium dissolved ICAP/MS    | ND     | 50     | 51.7      | ug/L  | 103        | (70-130)   | 20              | 0.47      |
| MSD2_202203141074 | Barium dissolved ICAP/MS    | ND     | 50     | 52.0      | ug/L  | 103        | (70-130)   | 20              | <u>32</u> |
| LCS1              | Beryllium dissolved ICAP/MS |        | 25     | 26.2      | ug/L  | 105        | (85-115)   |                 |           |
| LCS2              | Beryllium dissolved ICAP/MS |        | 25     | 25.4      | ug/L  | 101        | (85-115)   | 20              | 3.1       |
| MBLK              | Beryllium dissolved ICAP/MS |        |        | <0.1106   | ug/L  |            |            |                 |           |
| MBLK              | Beryllium dissolved ICAP/MS |        |        | <0.1106   | ug/L  |            |            |                 |           |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                     | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%) | RPD<br>Limit(%) | RPD%      |
|-------------------|-----------------------------|--------|--------|-----------|-------|------------|------------|-----------------|-----------|
| MRL_CHK           | Beryllium dissolved ICAP/MS |        | 1      | 1.02      | ug/L  | 102        | (50-150)   |                 |           |
| MS_202203080079   | Beryllium dissolved ICAP/MS | ND     | 25     | 25.3      | ug/L  | 101        | (70-130)   |                 |           |
| MS2_202203141074  | Beryllium dissolved ICAP/MS | ND     | 25     | 35.3      | ug/L  | <u>141</u> | (70-130)   |                 |           |
| MSD_202203080079  | Beryllium dissolved ICAP/MS | ND     | 25     | 26.2      | ug/L  | 105        | (70-130)   | 20              | 3.6       |
| MSD2_202203141074 | Beryllium dissolved ICAP/MS | ND     | 25     | 25.9      | ug/L  | 103        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Cadmium dissolved ICAP/MS   |        | 25     | 26.2      | ug/L  | 105        | (85-115)   |                 |           |
| LCS2              | Cadmium dissolved ICAP/MS   |        | 25     | 25.9      | ug/L  | 104        | (85-115)   | 20              | 1.1       |
| MBLK              | Cadmium dissolved ICAP/MS   |        |        | <0.0546   | ug/L  |            |            |                 |           |
| MBLK              | Cadmium dissolved ICAP/MS   |        |        | <0.0546   | ug/L  |            |            |                 |           |
| MRL_CHK           | Cadmium dissolved ICAP/MS   |        | 0.5    | 0.521     | ug/L  | 104        | (50-150)   |                 |           |
| MS_202203080079   | Cadmium dissolved ICAP/MS   | ND     | 25     | 25.8      | ug/L  | 103        | (70-130)   |                 |           |
| MS2_202203141074  | Cadmium dissolved ICAP/MS   | ND     | 25     | 35.4      | ug/L  | <u>141</u> | (70-130)   |                 |           |
| MSD_202203080079  | Cadmium dissolved ICAP/MS   | ND     | 25     | 25.9      | ug/L  | 103        | (70-130)   | 20              | 0.32      |
| MSD2_202203141074 | Cadmium dissolved ICAP/MS   | ND     | 25     | 26.3      | ug/L  | 105        | (70-130)   | 20              | <u>29</u> |
| LCS1              | Chromium dissolved ICAP/MS  |        | 50     | 53.3      | ug/L  | 107        | (85-115)   |                 |           |
| LCS2              | Chromium dissolved ICAP/MS  |        | 50     | 53.1      | ug/L  | 106        | (85-115)   | 20              | 0.38      |
| MBLK              | Chromium dissolved ICAP/MS  |        |        | <0.580    | ug/L  |            |            |                 |           |
| MBLK              | Chromium dissolved ICAP/MS  |        |        | <0.580    | ug/L  |            |            |                 |           |
| MRL_CHK           | Chromium dissolved ICAP/MS  |        | 1      | 1.35      | ug/L  | 135        | (50-150)   |                 |           |
| MS_202203080079   | Chromium dissolved ICAP/MS  | ND     | 50     | 53.2      | ug/L  | 106        | (70-130)   |                 |           |
| MS2_202203141074  | Chromium dissolved ICAP/MS  | ND     | 50     | 73.4      | ug/L  | <u>146</u> | (70-130)   |                 |           |
| MSD_202203080079  | Chromium dissolved ICAP/MS  | ND     | 50     | 53.8      | ug/L  | 107        | (70-130)   | 20              | 1.1       |
| MSD2_202203141074 | Chromium dissolved ICAP/MS  | ND     | 50     | 53.8      | ug/L  | 107        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Copper dissolved ICAP/MS    |        | 50     | 51.9      | ug/L  | 104        | (85-115)   |                 |           |
| LCS2              | Copper dissolved ICAP/MS    |        | 50     | 51.8      | ug/L  | 104        | (85-115)   | 20              | 0.19      |
| MBLK              | Copper dissolved ICAP/MS    |        |        | <1.343    | ug/L  |            |            |                 |           |
| MBLK              | Copper dissolved ICAP/MS    |        |        | <1.343    | ug/L  |            |            |                 |           |
| MRL_CHK           | Copper dissolved ICAP/MS    |        | 2      | 1.99      | ug/L  | 100        | (50-150)   |                 |           |
| MS_202203080079   | Copper dissolved ICAP/MS    | ND     | 50     | 50.9      | ug/L  | 102        | (70-130)   |                 |           |
| MS2_202203141074  | Copper dissolved ICAP/MS    | ND     | 50     | 70.8      | ug/L  | <u>142</u> | (70-130)   |                 |           |
| MSD_202203080079  | Copper dissolved ICAP/MS    | ND     | 50     | 51.7      | ug/L  | 103        | (70-130)   | 20              | 1.5       |
| MSD2_202203141074 | Copper dissolved ICAP/MS    | ND     | 50     | 51.7      | ug/L  | 103        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Lead dissolved ICAP/MS      |        | 50     | 52.2      | ug/L  | 104        | (85-115)   |                 |           |
| LCS2              | Lead dissolved ICAP/MS      |        | 50     | 51.7      | ug/L  | 103        | (85-115)   | 20              | 0.96      |
| MBLK              | Lead dissolved ICAP/MS      |        |        | <0.0608   | ug/L  |            |            |                 |           |
| MBLK              | Lead dissolved ICAP/MS      |        |        | <0.0608   | ug/L  |            |            |                 |           |
| MRL_CHK           | Lead dissolved ICAP/MS      |        | 0.5    | 0.499     | ug/L  | 100        | (50-150)   |                 |           |
| MS_202203080079   | Lead dissolved ICAP/MS      | ND     | 50     | 51.1      | ug/L  | 102        | (70-130)   |                 |           |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                     | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%) | RPD<br>Limit(%) | RPD%      |
|-------------------|-----------------------------|--------|--------|-----------|-------|------------|------------|-----------------|-----------|
| MS2_202203141074  | Lead dissolved ICAP/MS      | ND     | 50     | 71.2      | ug/L  | <u>142</u> | (70-130)   |                 |           |
| MSD_202203080079  | Lead dissolved ICAP/MS      | ND     | 50     | 52.2      | ug/L  | 104        | (70-130)   | 20              | 2.1       |
| MSD2_202203141074 | Lead dissolved ICAP/MS      | ND     | 50     | 52.7      | ug/L  | 105        | (70-130)   | 20              | <u>30</u> |
| LCS1              | Manganese dissolved ICAP/MS |        | 100    | 104       | ug/L  | 105        | (85-115)   |                 |           |
| LCS2              | Manganese dissolved ICAP/MS |        | 100    | 104       | ug/L  | 104        | (85-115)   | 20              | 0.96      |
| MBLK              | Manganese dissolved ICAP/MS |        |        | <0.4606   | ug/L  |            |            |                 |           |
| MBLK              | Manganese dissolved ICAP/MS |        |        | <0.4606   | ug/L  |            |            |                 |           |
| MRL_CHK           | Manganese dissolved ICAP/MS |        | 2      | 2.06      | ug/L  | 103        | (50-150)   |                 |           |
| MS_202203080079   | Manganese dissolved ICAP/MS | ND     | 100    | 102       | ug/L  | 102        | (70-130)   |                 |           |
| MS2_202203141074  | Manganese dissolved ICAP/MS | ND     | 100    | 144       | ug/L  | <u>145</u> | (70-130)   |                 |           |
| MSD_202203080079  | Manganese dissolved ICAP/MS | ND     | 100    | 103       | ug/L  | 103        | (70-130)   | 20              | 0.51      |
| MSD2_202203141074 | Manganese dissolved ICAP/MS | ND     | 100    | 104       | ug/L  | 104        | (70-130)   | 20              | <u>33</u> |
| LCS1              | Nickel dissolved ICAP/MS    |        | 50     | 50.8      | ug/L  | 102        | (85-115)   |                 |           |
| LCS2              | Nickel dissolved ICAP/MS    |        | 50     | 50.6      | ug/L  | 101        | (85-115)   | 20              | 0.39      |
| MBLK              | Nickel dissolved ICAP/MS    |        |        | <0.4959   | ug/L  |            |            |                 |           |
| MBLK              | Nickel dissolved ICAP/MS    |        |        | <0.4959   | ug/L  |            |            |                 |           |
| MRL_CHK           | Nickel dissolved ICAP/MS    |        | 5      | 4.98      | ug/L  | 100        | (50-150)   |                 |           |
| MS_202203080079   | Nickel dissolved ICAP/MS    | ND     | 50     | 50.6      | ug/L  | 101        | (70-130)   |                 |           |
| MS2_202203141074  | Nickel dissolved ICAP/MS    | ND     | 50     | 69.4      | ug/L  | <u>139</u> | (70-130)   |                 |           |
| MSD_202203080079  | Nickel dissolved ICAP/MS    | ND     | 50     | 50.7      | ug/L  | 101        | (70-130)   | 20              | 0.28      |
| MSD2_202203141074 | Nickel dissolved ICAP/MS    | ND     | 50     | 50.6      | ug/L  | 101        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Selenium dissolved ICAP/MS  |        | 50     | 52.9      | ug/L  | 106        | (85-115)   |                 |           |
| LCS2              | Selenium dissolved ICAP/MS  |        | 50     | 53.0      | ug/L  | 106        | (85-115)   | 20              | 0.19      |
| MBLK              | Selenium dissolved ICAP/MS  |        |        | <0.6224   | ug/L  |            |            |                 |           |
| MBLK              | Selenium dissolved ICAP/MS  |        |        | <0.6224   | ug/L  |            |            |                 |           |
| MRL_CHK           | Selenium dissolved ICAP/MS  |        | 5      | 5.25      | ug/L  | 105        | (50-150)   |                 |           |
| MS_202203080079   | Selenium dissolved ICAP/MS  | ND     | 50     | 52.8      | ug/L  | 106        | (70-130)   |                 |           |
| MS2_202203141074  | Selenium dissolved ICAP/MS  | ND     | 50     | 72.8      | ug/L  | <u>146</u> | (70-130)   |                 |           |
| MSD_202203080079  | Selenium dissolved ICAP/MS  | ND     | 50     | 52.8      | ug/L  | 106        | (70-130)   | 20              | 0.047     |
| MSD2_202203141074 | Selenium dissolved ICAP/MS  | ND     | 50     | 53.4      | ug/L  | 107        | (70-130)   | 20              | <u>31</u> |
| LCS1              | Thallium dissolved ICAP/MS  |        | 50     | 50.9      | ug/L  | 102        | (85-115)   |                 |           |
| LCS2              | Thallium dissolved ICAP/MS  |        | 50     | 50.6      | ug/L  | 101        | (85-115)   | 20              | 0.59      |
| MBLK              | Thallium dissolved ICAP/MS  |        |        | <0.1449   | ug/L  |            |            |                 |           |
| MBLK              | Thallium dissolved ICAP/MS  |        |        | <0.1449   | ug/L  |            |            |                 |           |
| MRL_CHK           | Thallium dissolved ICAP/MS  |        | 1      | 1.01      | ug/L  | 101        | (50-150)   |                 |           |
| MS_202203080079   | Thallium dissolved ICAP/MS  | ND     | 50     | 50.2      | ug/L  | 100        | (70-130)   |                 |           |
| MS2_202203141074  | Thallium dissolved ICAP/MS  | ND     | 50     | 70.2      | ug/L  | <u>140</u> | (70-130)   |                 |           |
| MSD_202203080079  | Thallium dissolved ICAP/MS  | ND     | 50     | 51.0      | ug/L  | 102        | (70-130)   | 20              | 1.5       |

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

 <sup>(</sup>S) - Indicates surrogate compound.
 (I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                    | Native | Spiked | Recovered                 | Units | Yield(%)   | Limits (%) | RPD<br>Limit(%) | RPD%      |  |
|-------------------|----------------------------|--------|--------|---------------------------|-------|------------|------------|-----------------|-----------|--|
| MSD2_202203141074 | Thallium dissolved ICAP/MS | ND     | 50     | 52.2                      | ug/L  | 104        | (70-130)   | 20              | <u>29</u> |  |
| LCS1              | Uranium dissolved ICAP/MS  |        | 50     | 51.3                      | ug/L  | 103        | (85-115)   |                 |           |  |
| LCS2              | Uranium dissolved ICAP/MS  |        | 50     | 51.5                      | ug/L  | 103        | (85-115)   | 20              | 0.39      |  |
| MBLK              | Uranium dissolved ICAP/MS  |        |        | <0.0872                   | ug/L  |            |            |                 |           |  |
| MBLK              | Uranium dissolved ICAP/MS  |        |        | <0.0872                   | ug/L  |            |            |                 |           |  |
| MRL_CHK           | Uranium dissolved ICAP/MS  |        | 1      | 1.01                      | ug/L  | 101        | (50-150)   |                 |           |  |
| MS_202203080079   | Uranium dissolved ICAP/MS  | ND     | 50     | 52.6                      | ug/L  | 105        | (70-130)   |                 |           |  |
| MS2_202203141074  | Uranium dissolved ICAP/MS  | ND     | 50     | 71.0                      | ug/L  | <u>142</u> | (70-130)   |                 |           |  |
| MSD_202203080079  | Uranium dissolved ICAP/MS  | ND     | 50     | 52.4                      | ug/L  | 105        | (70-130)   | 20              | 0.16      |  |
| MSD2_202203141074 | Uranium dissolved ICAP/MS  | ND     | 50     | 51.8                      | ug/L  | 104        | (70-130)   | 20              | <u>31</u> |  |
| LCS1              | Vanadium Dissolved ICAP/MS |        | 50     | 52.2                      | ug/L  | 104        | (85-115)   |                 |           |  |
| LCS2              | Vanadium Dissolved ICAP/MS |        | 50     | 52.5                      | ug/L  | 105        | (85-115)   | 20              | 0.57      |  |
| MBLK              | Vanadium Dissolved ICAP/MS |        |        | <1.017                    | ug/L  |            |            |                 |           |  |
| MBLK              | Vanadium Dissolved ICAP/MS |        |        | <1.017                    | ug/L  |            |            |                 |           |  |
| MRL_CHK           | Vanadium Dissolved ICAP/MS |        | 3      | 3.38                      | ug/L  | 113        | (50-150)   |                 |           |  |
| MS_202203080079   | Vanadium Dissolved ICAP/MS | ND     | 50     | 53.2                      | ug/L  | 106        | (70-130)   |                 |           |  |
| MS2_202203141074  | Vanadium Dissolved ICAP/MS | ND     | 50     | 72.4                      | ug/L  | <u>145</u> | (70-130)   |                 |           |  |
| MSD_202203080079  | Vanadium Dissolved ICAP/MS | ND     | 50     | 53.5                      | ug/L  | 107        | (70-130)   | 20              | 0.60      |  |
| MSD2_202203141074 | Vanadium Dissolved ICAP/MS | ND     | 50     | 53.1                      | ug/L  | 106        | (70-130)   | 20              | <u>31</u> |  |
| LCS1              | Zinc dissolved ICAP/MS     |        | 50     | 51.7                      | ug/L  | 103        | (85-115)   |                 |           |  |
| LCS2              | Zinc dissolved ICAP/MS     |        | 50     | 51.8                      | ug/L  | 104        | (85-115)   | 20              | 0.19      |  |
| MBLK              | Zinc dissolved ICAP/MS     |        |        | <10.62                    | ug/L  |            |            |                 |           |  |
| MBLK              | Zinc dissolved ICAP/MS     |        |        | <10.62                    | ug/L  |            |            |                 |           |  |
| MRL_CHK           | Zinc dissolved ICAP/MS     |        | 20     | 20.5                      | ug/L  | 103        | (50-150)   |                 |           |  |
| MS_202203080079   | Zinc dissolved ICAP/MS     | ND     | 50     | 52.0                      | ug/L  | 104        | (70-130)   |                 |           |  |
| MS2_202203141074  | Zinc dissolved ICAP/MS     | ND     | 50     | 71.8                      | ug/L  | <u>143</u> | (70-130)   |                 |           |  |
| MSD_202203080079  | Zinc dissolved ICAP/MS     | ND     | 50     | 53.1                      | ug/L  | 106        | (70-130)   | 20              | 2.0       |  |
| MSD2_202203141074 | Zinc dissolved ICAP/MS     | ND     | 50     | 52.3                      | ug/L  | 104        | (70-130)   | 20              | <u>31</u> |  |
| Mercury ICPMS by  | / EPA 200.8                |        |        |                           |       |            |            |                 |           |  |
| Analytical B      | atch: 1394923              |        |        | Analysis Date: 03/22/2022 |       |            |            |                 |           |  |
| LCS1              | Mercury dissolved ICAP/MS  |        | 0.75   | 0.779                     | ug/L  | 104        | (85-115)   |                 |           |  |
| LCS2              | Mercury dissolved ICAP/MS  |        | 0.75   | 0.753                     | ug/L  | 100        | (85-115)   | 20              | 3.4       |  |
| MBLK              | Mercury dissolved ICAP/MS  |        |        | <0.1                      | ug/L  |            |            |                 |           |  |
| MBLK              | Mercury dissolved ICAP/MS  |        |        | <0.1                      | ug/L  |            |            |                 |           |  |
| MRL_CHK           | Mercury dissolved ICAP/MS  |        | 0.2    | 0.213                     | ug/L  | 107        | (50-150)   |                 |           |  |
| MS_202203080079   | Mercury dissolved ICAP/MS  | ND     | 0.75   | 0.767                     | ug/L  | 102        | (70-130)   |                 |           |  |

ND

0.75

0.995

ug/L

<u>131</u>

(70-130)

Spike recovery is already corrected for native results.

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining.</u>

Criteria for MS and Dup are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

RPD not calculated for LCS2 when different a concentration than LCS1 is used.

RPD not calculated for Duplicates when the result is not five times the MRL (Minimum Reporting Level).

Mercury dissolved ICAP/MS

MS2\_202203141074

<sup>(</sup>S) - Indicates surrogate compound.

<sup>(</sup>I) - Indicates internal standard compound.





1 800 566 LABS (1 800 566 5227)

**Report:** 990476

Project: WATER-QUALITY

Group: JOB#310 DATA COLLECTION

#### Mojave Water Agency

| QC Type           | Analyte                           | Native | Spiked | Recovered | Units | Yield(%)   | Limits (%)  | RPD<br>Limit(%) | RPD%      |
|-------------------|-----------------------------------|--------|--------|-----------|-------|------------|-------------|-----------------|-----------|
| MSD_202203080079  | Mercury dissolved ICAP/MS         | ND     | 0.75   | 0.766     | ug/L  | 102        | (70-130)    | 20              | 0.13      |
| MSD2_202203141074 | Mercury dissolved ICAP/MS         | ND     | 0.75   | 0.762     | ug/L  | 100        | (70-130)    | 20              | <u>27</u> |
| Total phosphorus  | as P (T-P) by SM4500-PE/EPA 365.1 |        |        |           |       |            |             |                 |           |
| Analytical B      | atch: 1398116                     |        |        |           |       | Analysis D | ate: 03/30/ | 2022            |           |
| LCS1              | Total phosphorus as P             |        | 0.4    | 0.414     | mg/L  | 104        | (90-110)    |                 |           |
| LCS2              | Total phosphorus as P             |        | 0.4    | 0.396     | mg/L  | 99         | (90-110)    | 20              | 4.4       |
| MBLK              | Total phosphorus as P             |        |        | <0.0108   | mg/L  |            |             |                 |           |
| MRL_CHK           | Total phosphorus as P             |        | 0.02   | 0.0225    | mg/L  | 113        | (50-150)    |                 |           |
| MS_202203020446   | Total phosphorus as P             | 0.041  | 0.4    | 0.440     | mg/L  | 100        | (90-110)    |                 |           |
| MS_202203091141   | Total phosphorus as P             | 0.086  | 0.4    | 0.493     | mg/L  | 102        | (90-110)    |                 |           |
| MSD_202203020446  | Total phosphorus as P             | 0.041  | 0.4    | 0.458     | mg/L  | 104        | (90-110)    | 20              | 4.0       |
| MSD_202203091141  | Total phosphorus as P             | 0.086  | 0.4    | 0.493     | mg/L  | 102        | (90-110)    | 20              | 0.041     |



# **Environment Testing America**

## **ANALYTICAL REPORT**

Eurofins Calscience 2841 Dow Avenue, Suite 100 Tustin, CA 92780 Tel: (714)895-5494

Laboratory Job ID: 570-86715-1 Client Project/Site: 990476

For:

Eurofins Eaton Analytical 750 Royal Oaks Drive Monrovia, California 91016

Attn: Jaclyn Contreras

Ynanhlary

Authorized for release by: 4/5/2022 1:00:27 AM

Xuan Dang, Project Manager I (714)895-5494

Xuan.Dang@et.eurofinsus.com

----- LINKS -----

Review your project results through

Total Access

**Have a Question?** 



Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| QC Sample Results      | 8  |
| QC Association Summary | 9  |
| Lab Chronicle          | 10 |
| Certification Summary  | 11 |
| Method Summary         | 12 |
| Sample Summary         | 13 |
| Chain of Custody       | 14 |
| Receipt Checklists     | 15 |

**Table of Contents** 

## **Definitions/Glossary**

Client: Eurofins Eaton Analytical Job ID: 570-86715-1

Project/Site: 990476

#### **Qualifiers**

#### **General Chemistry**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| HF        | Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.           |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

### Glossary

| Glossary       |                                                                                                             |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |  |  |  |  |  |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |  |  |  |  |  |
| %R             | Percent Recovery                                                                                            |  |  |  |  |  |
| CFL            | Contains Free Liquid                                                                                        |  |  |  |  |  |
| CFU            | Colony Forming Unit                                                                                         |  |  |  |  |  |
| CNF            | Contains No Free Liquid                                                                                     |  |  |  |  |  |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |  |  |  |  |  |
| Dil Fac        | Dilution Factor                                                                                             |  |  |  |  |  |
| DL             | Detection Limit (DoD/DOE)                                                                                   |  |  |  |  |  |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |  |  |  |  |  |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |  |  |  |  |  |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |  |  |  |  |  |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |  |  |  |  |  |

| LOD | Limit of Detection (DoD/DOE)                 |
|-----|----------------------------------------------|
| LOQ | Limit of Quantitation (DoD/DOE)              |
| MCL | EPA recommended "Maximum Contaminant Level"  |
| MDA | Minimum Detectable Activity (Radiochemistry) |

MDC Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

Minimum Level (Diovin)

ML Minimum Level (Dioxin)

MPN Most Probable Number

MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Calscience 157 4/5/2022 Page 30 of 42 pages

#### **Case Narrative**

Client: Eurofins Eaton Analytical

Project/Site: 990476

Job ID: 570-86715-1

Job ID: 570-86715-1

**Laboratory: Eurofins Calscience** 

Narrative

Job Narrative 570-86715-1

#### Comments

No additional comments.

#### Receipt

The sample was received on 3/3/2022 1:48 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **General Chemistry**

Method SM 3500 Fe B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: 202203020945 (570-86715-1), (570-86257-M-3), (570-86257-M-3 MS) and (570-86257-M-3 MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

6

0

q

10

10

13

## **Detection Summary**

Client: Eurofins Eaton Analytical

Client Sample ID: 202203020945

Project/Site: 990476

Job ID: 570-86715-1

Lab Sample ID: 570-86715-1

| Analyte                       | Result | Qualifier | RL    | MDL   | Unit       | Dil Fac | D | Method   | Prep Type   |
|-------------------------------|--------|-----------|-------|-------|------------|---------|---|----------|-------------|
| Iron                          | 195    |           | 100   | 50.0  | ug/L       | 1       | _ | 6010B    | Total       |
|                               |        |           |       |       |            |         |   |          | Recoverable |
| Oxidation Reduction Potential | 397    | HF        |       |       | millivolts | 1       |   | SM 2580B | Total/NA    |
| Ferric Iron                   | 0.195  | J         | 0.500 | 0.140 | mg/L       | 1       |   | SM 3500  | Total/NA    |

4

5

7

46

11

10

1/

## **Client Sample Results**

Client: Eurofins Eaton Analytical Job ID: 570-86715-1

Project/Site: 990476

Method: 6010B - Metals (ICP) - Total Recoverable

Lab Sample ID: 570-86715-1

**Matrix: Water** 

Date Collected: 03/02/22 16:10 Date Received: 03/03/22 13:48

Client Sample ID: 202203020945

 Analyte
 Result Iron
 Qualifier
 RL
 MDL upit
 D ug/L
 Prepared 03/21/22 06:38
 Analyzed 03/21/22 18:00
 Dil Fac 03/21/22 06:38

4

5

6

0

9

11

4.0

## **Client Sample Results**

Client: Eurofins Eaton Analytical Job ID: 570-86715-1

Project/Site: 990476

**General Chemistry** 

Client Sample ID: 202203020945 Lab Sample ID: 570-86715-1 Date Collected: 03/02/22 16:10

**Matrix: Water** 

| Date Received: 03/03/22 13:48 |        |           |       |        |            |   |          |                |         |
|-------------------------------|--------|-----------|-------|--------|------------|---|----------|----------------|---------|
| Analyte                       | Result | Qualifier | RL    | MDL    | Unit       | D | Prepared | Analyzed       | Dil Fac |
| Oxidation Reduction Potential | 397    | HF        |       |        | millivolts |   |          | 03/23/22 14:34 | 1       |
| Ferric Iron                   | 0.195  | J         | 0.500 | 0.140  | mg/L       |   |          | 04/05/22 00:39 | 1       |
| Ferrous Iron                  | ND     | HF        | 0.100 | 0.0185 | ma/L       |   |          | 03/07/22 23:00 | 1       |

Client: Eurofins Eaton Analytical

Project/Site: 990476

Job ID: 570-86715-1

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 440-669402/1-A

Lab Sample ID: LCS 440-669402/2-A

**Matrix: Water** 

**Matrix: Water** 

Analysis Batch: 669482

Analysis Batch: 669482

Client Sample ID: Method Blank **Prep Type: Total Recoverable** 

Prep Batch: 669402

MB MB

Dil Fac Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Iron ND 100 50.0 ug/L 03/21/22 06:38 03/21/22 16:16

> Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

**Prep Batch: 669402** 

Prep Type: Total/NA

Spike LCS LCS %Rec Limits

Analyte Added Result Qualifier Unit D %Rec Iron 1000 970.3 ug/L 97 80 - 120

Method: SM 2580B - Reduction-Oxidation (REDOX) Potential

Lab Sample ID: 570-86715-1 DU Client Sample ID: 202203020945

**Matrix: Water** Prep Type: Total/NA

Analysis Batch: 669640

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit RPD Limit Oxidation Reduction Potential 397 HF 398.0 millivolts 0.3

Method: SM 3500 Fe B - Iron, Ferrous

Lab Sample ID: MB 570-217833/4 Client Sample ID: Method Blank Prep Type: Total/NA

**Matrix: Water** 

Analysis Batch: 217833

мв мв

Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 0.100 03/07/22 22:46 Ferrous Iron ND 0.0185 mg/L

Lab Sample ID: LCS 570-217833/5 Client Sample ID: Lab Control Sample

**Matrix: Water** 

Analysis Batch: 217833

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Ferrous Iron 0.999 0.9829 mg/L 98 79 - 114

Lab Sample ID: LCSD 570-217833/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

**Matrix: Water** Analysis Batch: 217833

Spike LCSD LCSD %Rec RPD Added Analyte Result Qualifier Unit %Rec Limits RPD Limit Ferrous Iron 0.999 0.9958 mg/L 100 79 - 114

Page 35 of 42 pages

## **QC Association Summary**

Client: Eurofins Eaton Analytical Job ID: 570-86715-1

Project/Site: 990476

**Metals** 

**Prep Batch: 669402** 

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 570-86715-1        | 202203020945       | Total Recoverable | Water  | 3005A  |            |
| MB 440-669402/1-A  | Method Blank       | Total Recoverable | Water  | 3005A  |            |
| LCS 440-669402/2-A | Lab Control Sample | Total Recoverable | Water  | 3005A  |            |

Analysis Batch: 669482

| Lab Sample ID      | Client Sample ID   | Prep Type         | Matrix | Method | Prep Batch |
|--------------------|--------------------|-------------------|--------|--------|------------|
| 570-86715-1        | 202203020945       | Total Recoverable | Water  | 6010B  | 669402     |
| MB 440-669402/1-A  | Method Blank       | Total Recoverable | Water  | 6010B  | 669402     |
| LCS 440-669402/2-A | Lab Control Sample | Total Recoverable | Water  | 6010B  | 669402     |

**General Chemistry** 

Analysis Batch: 217833

| Lab Sample ID     | Client Sample ID       | Prep Type | Matrix | Method       | Prep Batch |
|-------------------|------------------------|-----------|--------|--------------|------------|
| 570-86715-1       | 202203020945           | Total/NA  | Water  | SM 3500 Fe B |            |
| MB 570-217833/4   | Method Blank           | Total/NA  | Water  | SM 3500 Fe B |            |
| LCS 570-217833/5  | Lab Control Sample     | Total/NA  | Water  | SM 3500 Fe B |            |
| LCSD 570-217833/6 | Lab Control Sample Dup | Total/NA  | Water  | SM 3500 Fe B |            |

Analysis Batch: 224355

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 570-86715-1   | 202203020945     | Total/NA  | Water  | SM 3500 |            |

Analysis Batch: 669640

| Lab Sample ID  | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|----------------|------------------|-----------|--------|----------|------------|
| 570-86715-1    | 202203020945     | Total/NA  | Water  | SM 2580B |            |
| 570-86715-1 DU | 202203020945     | Total/NA  | Water  | SM 2580B |            |

J-007 13-1

163 4/5/2022 Page 36 of 42 pages

**Eurofins Calscience** 

#### **Lab Chronicle**

Client: Eurofins Eaton Analytical

Project/Site: 990476

Lab Sample ID: 570-86715-1

**Matrix: Water** 

Job ID: 570-86715-1

Date Collected: 03/02/22 16:10 Date Received: 03/03/22 13:48

Client Sample ID: 202203020945

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 3005A 669402 IRV 2 Total Recoverable Prep 25 mL 25 mL 03/21/22 06:38 Total Recoverable Analysis 6010B 669482 03/21/22 18:00 P1R IRV 2 Instrument ID: ICP8 Total/NA Analysis SM 2580B 669640 03/23/22 14:34 VY3D IRV 2 Instrument ID: NOEQUIP Total/NA SM 3500 224355 04/05/22 00:39 W1BQ ECL 4 Analysis Instrument ID: NOEQUIP Total/NA Analysis SM 3500 Fe B 5 mL 10 mL 217833 03/07/22 23:00 WN6Y ECL 4 Instrument ID: UV8

#### **Laboratory References:**

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 IRV 2 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

## **Accreditation/Certification Summary**

Client: Eurofins Eaton Analytical

Project/Site: 990476

Job ID: 570-86715-1

#### **Laboratory: Eurofins Calscience**

The accreditations/certifications listed below are applicable to this report.

| Authority  | Program | Identification Number | Expiration Date |
|------------|---------|-----------------------|-----------------|
| California | State   | 2944                  | 09-30-22        |
| Oregon     | NELAP   | CA300001              | 01-31-23        |

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

| Analysis Method | Prep Method | Matrix | Analyte     |
|-----------------|-------------|--------|-------------|
| SM 3500         |             | Water  | Ferric Iron |

#### **Laboratory: Eurofins Calscience**

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority  | Program                       | Identification Number | <b>Expiration Date</b> |  |
|------------|-------------------------------|-----------------------|------------------------|--|
| California | Los Angeles County Sanitation | 10256                 | 06-30-22               |  |
|            | Districts                     |                       |                        |  |
| California | State                         | 2706                  | 06-30-22               |  |
| Kansas     | NELAP                         | E-10420               | 07-31-22               |  |
| Nevada     | State                         | CA015312022-1         | 07-31-22               |  |
| Washington | State                         | C900                  | 09-03-22               |  |

715-1

3

4

5

7

Ö

10

11

12

## **Method Summary**

Client: Eurofins Eaton Analytical

Project/Site: 990476

Job ID: 570-86715-1

| rotocol | Laboratory |
|---------|------------|
| W846    | IRV 2      |
| М       | IRV 2      |
|         |            |

| Method       | Method Description                                 | Protocol | Laboratory |
|--------------|----------------------------------------------------|----------|------------|
| 6010B        | Metals (ICP)                                       | SW846    | IRV 2      |
| SM 2580B     | Reduction-Oxidation (REDOX) Potential              | SM       | IRV 2      |
| SM 3500      | Iron, Ferric                                       | SM       | ECL 4      |
| SM 3500 Fe B | Iron, Ferrous                                      | SM       | ECL 4      |
| 3005A        | Preparation, Total Recoverable or Dissolved Metals | SW846    | IRV 2      |

#### Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

ECL 4 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494 IRV 2 = Eurofins Calscience Tustin, 2841 Dow Avenue, Tustin, CA 92780, TEL (714)895-5494

## **Sample Summary**

03/02/22 16:10 03/03/22 13:48

Water

Client: Eurofins Eaton Analytical

202203020945

Project/Site: 990476

570-86715-1

Job ID: 570-86715-1

Lab Sample ID Client Sample ID Matrix Collected Received

4

5

7

10

11

4.0

raion Analy Cor

eurofins eurofins

**Eurofins Calscience** 

Ship To:

2841 Dow Avenue

Tustin, CA 92780

Report all quality control data according to Method, Include dates analyzed. Date extracted (if extracted) and Method reference on the report. Results must have Complete data & QC with Approval Signature.

EMAIL TO: Eaton-MonroviaSubContract@eurofinset.com. Eurofins Eaton Analytical, LLC 750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016. Accounts Payable 2425 New Holland Pike, Lancaster, PA 17605 Reports: Jackie Contreras Sub-Contracting Administrator Invoices to: Eurofins Eaton Analytical, LLC Phone (626) 386-1165 Fax (626) 386-1122

Provide in each Report the Specified StateCertification # and Exp Date for requested tests + matrix

Samples from: CALIFORNIA



| Report Due:<br>03/23/2022 |
|---------------------------|
|                           |

Fax 714-894-7501

Phone 714-895-5494

| =                                             |                         |
|-----------------------------------------------|-------------------------|
|                                               |                         |
|                                               |                         |
|                                               |                         |
|                                               |                         |
|                                               |                         |
|                                               |                         |
| WSID                                          |                         |
| <b>≥</b>                                      |                         |
| _                                             | اۃا                     |
|                                               | 믕                       |
|                                               | 黄                       |
|                                               | 5                       |
| <del>o</del> e                                |                         |
| Ö                                             |                         |
| <u>a</u>                                      |                         |
| Clip Code                                     |                         |
|                                               |                         |
|                                               |                         |
| l Ê                                           |                         |
| Ma<br>W                                       |                         |
| Sample Date & Time Matrix<br>03/02/22 1610 DW |                         |
| I.E.S.                                        | 통                       |
| - =                                           | ample Pol               |
| 8 (22)                                        | 혈                       |
| late & Tir                                    | )ar                     |
| 08                                            | "                       |
| ple                                           |                         |
| Ē                                             |                         |
| ιζ                                            |                         |
|                                               |                         |
|                                               |                         |
|                                               | اۃ                      |
|                                               | <u>Z</u>                |
|                                               | ᇹ                       |
|                                               | ᇤ                       |
|                                               |                         |
|                                               | و ا                     |
|                                               | ested                   |
|                                               | l e                     |
| μ                                             | Şed                     |
| nce on                                        | l s                     |
| 900                                           | , is                    |
| rei                                           | went:<br>Analysis Reque |
| efe                                           | e Event                 |
| )rr                                           | 흥                       |
| 3                                             | Sample                  |
| 11 e                                          | š                       |
| ldı                                           |                         |
| an                                            | 9                       |
| \$>                                           | 음                       |
| Client Sample<br>ORMW-1                       | Prep Method             |
| 38                                            | di                      |
|                                               | 1 %                     |
|                                               |                         |
|                                               |                         |
|                                               |                         |
| 5                                             |                         |
| 60                                            | .:                      |
| <u> </u>                                      | اق                      |
| 96<br>33<br>33                                | S S                     |
| E 23                                          | Sample t<br>Method      |
| % S                                           | ഗ്  ഉ                   |

<u>S</u>

| Method       | Prep Method | Analysis Requested            |
|--------------|-------------|-------------------------------|
| SM 3500      |             | Iron, Ferric                  |
| SM 3500 Fe B |             | Iron, Ferrous                 |
| ASTM D1498   |             | Oxidation Reduction Potential |
|              |             |                               |

NOTIFICATION REQUIRED IF RECEIVED OUTSIDE OF 0-6 CELSIUS

An Acknowledgement of Receipt is requested to attn. Jackie Contreras

Time Time Page 5 of 6

Date Date

Sample Control

Relinquished by:

Sample Control

Relinguished by:

Received by:

Date 3/3/ Date 2

750 Royal Oaks Drive, Suite 100, Monrovia, CA 91016 Tel (626) 386-1100 Fax (866) 988-3757 www EurofinsUS com/Eaton

Client: Eurofins Eaton Analytical

Job Number: 570-86715-1

Login Number: 86715 List Source: Eurofins Calscience

List Number: 1 Creator: Luu, Sheila

| Question                                                                                                  | Answer | Comment                             |
|-----------------------------------------------------------------------------------------------------------|--------|-------------------------------------|
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |                                     |
| The cooler's custody seal, if present, is intact.                                                         | True   |                                     |
| Sample custody seals, if present, are intact.                                                             | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |                                     |
| Samples were received on ice.                                                                             | True   |                                     |
| Cooler Temperature is acceptable.                                                                         | True   |                                     |
| Cooler Temperature is recorded.                                                                           | True   |                                     |
| COC is present.                                                                                           | True   |                                     |
| COC is filled out in ink and legible.                                                                     | True   |                                     |
| COC is filled out with all pertinent information.                                                         | True   |                                     |
| Is the Field Sampler's name present on COC?                                                               | False  | Refer to Job Narrative for details. |
| There are no discrepancies between the containers received and the COC.                                   | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |                                     |
| Sample containers have legible labels.                                                                    | True   |                                     |
| Containers are not broken or leaking.                                                                     | True   |                                     |
| Sample collection date/times are provided.                                                                | True   |                                     |
| Appropriate sample containers are used.                                                                   | False  | Improper containers received.       |
| Sample bottles are completely filled.                                                                     | True   |                                     |
| Sample Preservation Verified.                                                                             | True   |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |                                     |
| Multiphasic samples are not present.                                                                      | True   |                                     |
| Samples do not require splitting or compositing.                                                          | True   |                                     |
| Residual Chlorine Checked.                                                                                | N/A    |                                     |
|                                                                                                           |        |                                     |

6

\_

9

11

13

## APPENDIX H MWA WELL CANVASSING SHEET

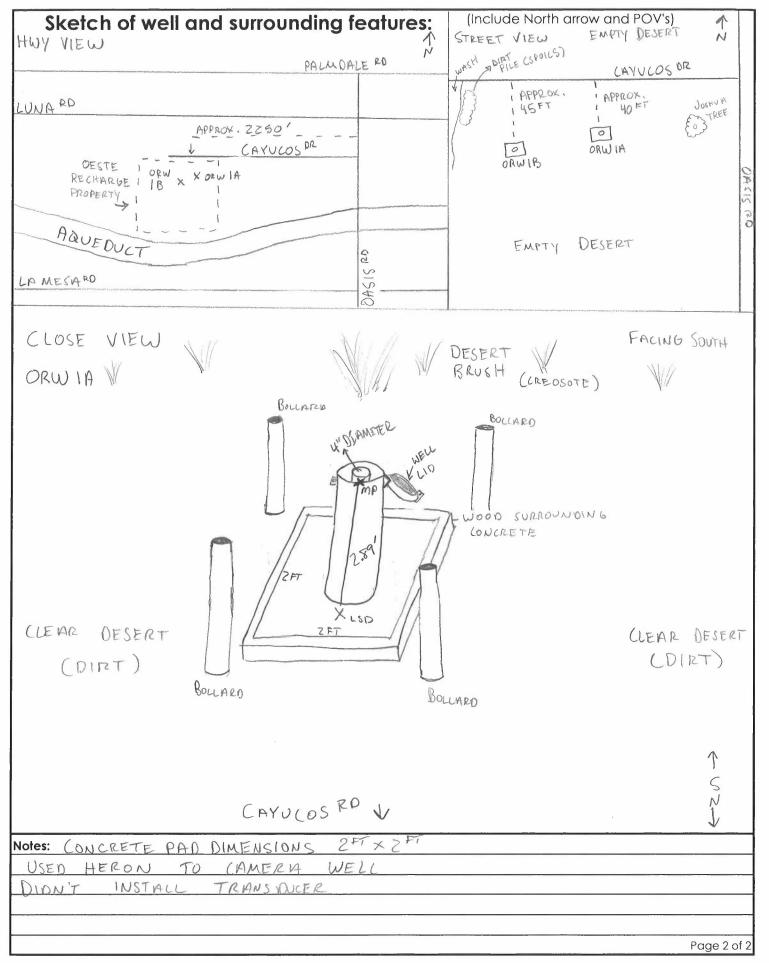


**SWN**: 05N07W30Q01 ORMW1

Common Name: OESTE RECHARGE WELL ORW IA

Date: 3/23/2022

Completed By: M. JOHNSON
Lat/Long (DMS) & Datum: 34° 29 / 16. 139 "N


Log Completed

## **MWA WELL CANVASSING SHEET**

| Site Address:                                                          | APN: 309908101                                                                                                                                                                                   |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cross Street:                                                          | OASIS RD                                                                                                                                                                                         |
| General Location:                                                      | LOCATED TOWARD NORTHEAST SIDE OF PROPERTY                                                                                                                                                        |
| Name of GPS Point:                                                     | DESTE RECHARGE WELL IA  Satellites: 15 / 24 (OLD) Accuracy: P2) 0.6 IN / 1.0 IN Points: 126 (OLD)                                                                                                |
| GPS Measurement Point<br>Description:                                  | LSD IS X ON CONCRETE PAD, NORTH SIDE OF CASING                                                                                                                                                   |
| Well Type:                                                             | Domestic Agricultural Production X Monitoring                                                                                                                                                    |
| Status:                                                                | Active X Inactive Pump in Well: Yes X No                                                                                                                                                         |
|                                                                        | Site Status: A=atmos.press.B=tide stage D=dry E=recently flowing F=flowing G=nearby recently flowing I=injector                                                                                  |
| Site Status:                                                           | site M=plugged N=meas-discontinued O=obstructed P=pumpling R=recently pumped S=nearby pumping T=nearby recently pumping V=foreign substance W=well destroyed X=affected by surface water Z=other |
| Casing Diameter (inches):                                              | Casing Material: PC                                                                                                                                                                              |
| Height of Measuring Point (FT ALSD):  *ALSD - above land surface datum | Photograph of Measuring Point:                                                                                                                                                                   |
| Measuring Point Description:                                           | Measurement Method: MWA.ET.800.1  MWA & USGS ID#  T.O.C. NORTH SIDE                                                                                                                              |
| LSD Description:                                                       | X ON CONCRETE PAD, NORTH SIDE OF CASING                                                                                                                                                          |
| Depth to Water (feet):                                                 | 541.35 BMP 538.46 BLSD Time: 09:04                                                                                                                                                               |
| Depth to Water (feet):                                                 | SY1.35' BMP 538,46' BLSD Datum(PST/PDT                                                                                                                                                           |
| DTW Calculation:                                                       | 11.35'- 2,89'= 538.46'                                                                                                                                                                           |
| Total Depth of Well (feet):                                            | G33.2' BMP G30.31' BLSD                                                                                                                                                                          |
|                                                                        |                                                                                                                                                                                                  |
| Total Depth Calculation:                                               | 633.2'-2.89'= 630.31'                                                                                                                                                                            |
|                                                                        | D - below land surface datum                                                                                                                                                                     |
| Total Depth Calculation:                                               | D-below land surface datum  633.2'-2.89' = 630.31'  MANY                                                                                                                                         |

(Continued on other side)

Page 1 of 2



# APPENDIX I WELL COMPLETION REPORTS SUBMITTED TO CALIFORNIA DEPARTMENT OF WATER RESOURCES

### State of California

# Well Completion Report Form DWR 188 Submitted 4/4/2022 WCR2022-003846

| Owner's Well Number                   | er OES      | TE-R         |                        |                 | Date Work   | Began  | 01/3                                                                                               | 1/2022     |         | I           | Date Wo   | rk Ended     | 02/14/2    | :022          |          |
|---------------------------------------|-------------|--------------|------------------------|-----------------|-------------|--------|----------------------------------------------------------------------------------------------------|------------|---------|-------------|-----------|--------------|------------|---------------|----------|
| Local Permit Agency                   | San Be      | ernardino Co | unty DF                | PH - Environm   | ental Healt | h Serv | ices Safe                                                                                          | e Drinkino | g Wat   | er Permit   | Section   |              |            |               |          |
| Secondary Permit Ag                   | gency       |              |                        |                 | Permit I    | Numbe  | r WP0                                                                                              | 037565     |         |             | Pe        | ermit Date   | 11/30/2    | 2021          |          |
| Well Owner (r                         | must re     | main cor     | nfider                 | ntial pursu     | uant to     | Wate   | r Cod                                                                                              | e 1375     | 52)     |             | Plann     | ed Use       | and A      | ctivity       | ,        |
| Name MOJAVE V                         | NATER AG    | SENCY,       |                        |                 |             |        |                                                                                                    |            |         | Activity    | New       | Well         |            |               |          |
| Mailing Address                       | 13846 Cor   | nference Cer | nter Dr                |                 |             |        |                                                                                                    |            |         | Planne      | d Use     | Monitorin    | na .       |               |          |
| _                                     |             |              |                        |                 |             |        |                                                                                                    |            |         |             | . 000     |              |            |               |          |
| City Apple Valley                     |             |              |                        |                 | State       | CA     | Zip<br>-                                                                                           | 92307      | ]       |             |           |              |            |               |          |
|                                       |             |              |                        |                 | Wel         | Loc    | ation                                                                                              |            |         |             |           |              |            |               |          |
| Address 535 Cay                       | yucos RD    |              |                        |                 |             |        |                                                                                                    |            | API     | N 309       | 9908101   |              |            |               |          |
| City Pinon Hills                      |             |              | Zip                    | 92371           | County      | San    | Bernardi                                                                                           | ino        | Tov     | vnship      | 05 N      |              |            |               |          |
| Latitude 34                           | 29          | 16.1699      | N                      | Longitude       | -<br>-117   | 39     | 0.20                                                                                               | 016 W      | Rar     | _           | W         |              |            |               |          |
| Deg.                                  | Min.        | Sec.         | _                      | _               | Deg.        | Min.   | Se                                                                                                 | C.         |         | ction 3     | idian     | San Berna    | rdino      |               |          |
| Dec. Lat. 34.4878                     | 25          |              |                        | Dec. Long.      | -117.6500   | 056    |                                                                                                    |            |         | ound Surfa  | _         |              | - Carrio   |               |          |
| Vertical Datum                        |             |              | Ho                     | orizontal Datun | n WGS8      | 34     |                                                                                                    |            | •       | vation Ac   |           |              |            |               |          |
| Location Accuracy                     | Unknow      |              | <br>_ocatior<br>Method | n Determinatio  | n GPS       |        |                                                                                                    |            | Ele     | vation De   | terminati | on Method    |            |               |          |
|                                       | Bore        | hole Info    | rmati                  | ion             |             |        |                                                                                                    | Water      | Lev     | el and      | Yield     | of Com       | pletec     | l Well        |          |
| Orientation Vertic                    | ·al         |              |                        | Specif          | ·v          |        |                                                                                                    | o first wa |         |             | 30        |              | elow surfa |               |          |
|                                       | ownhole R   | otany [      | Orilling F             |                 |             | —      | Depth to                                                                                           | o Static   | -       |             |           | _            |            |               |          |
|                                       | ammer       |              | Jilling i              | 140110          |             |        | Water L                                                                                            | _          |         |             | (Feet)    | Date Mea     | sured      | 03/01/2       | 2022     |
|                                       |             |              |                        |                 |             |        |                                                                                                    | ed Yield*  |         |             | (GPM)     | Test Type    |            | <del></del> , | (f = -1) |
| Total Depth of Boring 660 Feet        |             |              |                        |                 |             |        | Test Length (Hours) Total Drawdown (feet)  *May not be representative of a well's long term yield. |            |         |             |           | (teet)       |            |               |          |
| Total Depth of Comp                   | pleted Well | 640          |                        | Feet            |             |        | iviay iii                                                                                          | ot be repr | 1636111 | lative of a | Well 3 lo | ing term yie |            |               |          |
|                                       |             |              |                        | Ge              | ologic      | Log -  | Free                                                                                               | Form       |         |             |           |              |            |               |          |
| Depth from<br>Surface<br>Feet to Feet |             |              |                        |                 |             |        | Descri                                                                                             | ption      |         |             |           |              |            |               |          |

660

See attached Lithologic Logs

|             | Casings |                            |             |          |                                         |                               |                                 |                 |                                 |             |
|-------------|---------|----------------------------|-------------|----------|-----------------------------------------|-------------------------------|---------------------------------|-----------------|---------------------------------|-------------|
| Casing<br># |         | <b>m Surface</b><br>o Feet | Casing Type | Material | Casings Specificatons                   | Wall<br>Thickness<br>(inches) | Outside<br>Diameter<br>(inches) | Screen<br>Type  | Slot Size<br>if any<br>(inches) | Description |
| 1           | 0       | 560                        | Blank       | PVC      | OD: 4.500 in.  <br>Thickness: 0.337 in. | 0.337                         | 4.5                             |                 |                                 |             |
| 1           | 560     | 640                        | Screen      | PVC      | OD: 4.500 in.  <br>Thickness: 0.337 in. | 0.337                         | 4.5                             | Milled<br>Slots | 0.02                            |             |

|                                      | Annular Material |             |                             |                  |                    |  |  |  |  |  |  |  |
|--------------------------------------|------------------|-------------|-----------------------------|------------------|--------------------|--|--|--|--|--|--|--|
| Depth from Surface Fill Feet to Feet |                  | Fill        | Fill Type Details           | Filter Pack Size | Description        |  |  |  |  |  |  |  |
| 0                                    | 3                | Other Fill  | See description.            |                  | Concrete Ready Mix |  |  |  |  |  |  |  |
| 3                                    | 22               | Cement      | Portland Cement/Neat Cement |                  |                    |  |  |  |  |  |  |  |
| 22                                   | 549              | Other Fill  | See description.            |                  | Sand/Bentonite mix |  |  |  |  |  |  |  |
| 549                                  | 652              | Filter Pack | 8 x 20                      |                  |                    |  |  |  |  |  |  |  |
| 652                                  | 660              | Other Fill  | See description.            |                  | Slough             |  |  |  |  |  |  |  |

### Other Observations:

| Borehole Specifications               |     |                            |  |  |  |  |  |
|---------------------------------------|-----|----------------------------|--|--|--|--|--|
| Depth from<br>Surface<br>Feet to Feet |     | Borehole Diameter (inches) |  |  |  |  |  |
| 0                                     | 240 | 11.75                      |  |  |  |  |  |
| 240                                   | 660 | 10                         |  |  |  |  |  |

| Certification Statement |                                                  |      |                      |               |             |  |  |  |
|-------------------------|--------------------------------------------------|------|----------------------|---------------|-------------|--|--|--|
| I, the under            | signed, certify that this report is complete and | accu | ate to the best of m | y knowledge a | and belief  |  |  |  |
| Name                    | A B C LIO                                        | /IN  | DRILLING INC         |               |             |  |  |  |
|                         | Person, Firm or Corporation                      |      |                      |               |             |  |  |  |
| 11                      | 80 E BURNETT STREET                              | S    | GNAL HILL            | CA            | 90755       |  |  |  |
|                         | Address                                          |      |                      | State         | Zip         |  |  |  |
| Signed                  | electronic signature received                    | _    | 04/05/2022           |               | 22904       |  |  |  |
|                         | C-57 Licensed Water Well Contracto               | r    | Date Signed          | C-57 Lice     | ense Number |  |  |  |

| Attachments                                            |
|--------------------------------------------------------|
| MWA_MW-OESTE-R Lith Log.pdf - Geologic Log             |
| OSTE-R Well Diagram 01.pdf - Well Construction Diagram |
| OESTE-R Site Map.pdf - Location Map                    |

|      | DWR Use Only      |           |                  |  |   |                   |     |     |      |     |   |
|------|-------------------|-----------|------------------|--|---|-------------------|-----|-----|------|-----|---|
| CSG# | State Well Number |           | Number Site Code |  |   | Local Well Number |     |     |      |     |   |
|      |                   |           |                  |  |   |                   |     |     |      |     |   |
|      |                   |           | N                |  |   |                   |     |     |      |     | w |
| La   | titude De         | g/Min/Sec |                  |  | L | ongitu            | ıde | Deg | /Min | /Se | С |
| TRS: |                   |           |                  |  |   |                   |     |     |      |     |   |
| APN: |                   |           |                  |  |   |                   |     |     |      |     |   |
|      |                   |           |                  |  |   |                   |     |     |      |     |   |

### State of California

# Well Completion Report Form DWR 188 Submitted 4/4/2022 WCR2022-003845

| Owner's W                 | ell Number   | OESTE     | <b>E-</b> P |                   |                 | Date Work   | Began         | 12/20     | 0/2021      |       | Da            | ate Woi      | rk Ended    | 01/05/2022   |        |
|---------------------------|--------------|-----------|-------------|-------------------|-----------------|-------------|---------------|-----------|-------------|-------|---------------|--------------|-------------|--------------|--------|
| Local Perm                | nit Agency   | San Ber   | nardino Co  | unty DI           | PH - Environm   | ental Healt | h Servi       | ces Safe  | Drinking    | Wate  | er Permit S   | ection       |             |              |        |
| Secondary                 | Permit Ager  | ncy       |             |                   |                 | Permit N    | Numbe         | r WP0     | 037564      |       |               | Pe           | rmit Date   | 11/30/2021   |        |
| Well O                    | wner (mı     | ust rem   | nain cor    | ıfideı            | ntial purs      | uant to     | Wate          | r Cod     | e 1375      | 2)    | Р             | lann         | ed Use      | and Activi   | ty     |
| Name M                    | //OJAVE WA   | TER AGE   | NCY,        |                   |                 |             |               |           |             |       | Activity      | New          | Well        |              |        |
| Mailing Ad                | ldress 13    | 846 Confe | erence Cen  | nter Dr           |                 |             |               |           |             | _     | Planned l     | Use          | Monitorin   | g            |        |
| City App                  | le Valley    |           |             |                   |                 | State       | CA            | Zip       | 92307       | _     |               |              |             |              |        |
|                           |              |           |             |                   |                 | Well        | Loc           | ation     |             |       |               |              |             |              |        |
| Address                   | 535 Cayud    | cos RD    |             |                   |                 |             |               |           |             | API   | N 3099        | 08101        |             |              |        |
| City Pir                  | non Hills    |           |             | Zip               | 92371           | County      | San           | Bernardi  | no          | Tov   | vnship        | 05 N         |             |              |        |
| Latitude                  | 34           | 29        | 16.0692     | N                 | Longitude       | -<br>-117   | 39            | 0.75      |             | Rar   | nge 07 V      | N            |             |              |        |
| -                         |              | Min.      | Sec.        | -                 |                 | Deg.        | Min.          | Se        |             |       | tion 30       |              |             |              |        |
| Dec. Lat.                 | 34.487797    | IVIIII.   | 000.        |                   | Dec. Long.      | -117.6502   |               | 00        | <b>.</b>    |       | seline Merid  | _            | San Berna   | rdino        |        |
|                           |              |           |             |                   | _               |             |               |           |             |       | ound Surfac   |              | ation       |              |        |
| Vertical Da               |              |           |             |                   | orizontal Datur |             | 54            |           |             |       | vation Accu   | ,            |             |              |        |
| Location A                | ccuracy<br>- | Unknown   |             | ocation<br>dethod | n Determinatio  | on GPS      |               |           |             | Fie   | vation Dete   | rminati      | on Method   |              |        |
|                           |              | Boreh     | ole Info    | rmat              | ion             |             |               | ,         | Water       | Lev   | el and Y      | <b>field</b> | of Com      | pleted We    | II     |
| Orientation               | n Vertical   |           |             |                   | Speci           | fy          |               | Depth to  | o first wat | er    |               |              | (Feet be    | low surface) |        |
| Drilling Me               | thod Soni    | <u></u>   |             | Drilling I        |                 |             | $- \parallel$ | Depth to  | Static      | _     |               |              | _           |              |        |
|                           |              |           |             | 9                 |                 |             |               | Water L   | evel _      |       | `             | Feet)        | Date Mea    | sured        |        |
| Total Dept                | h of Boring  | 400       |             |                   | Feet            |             |               |           | ed Yield*   | _     | `             | GPM)         | Test Type   |              |        |
| Total Dept                | h of Comple  | ted Well  | 290.6       |                   | Feet            |             |               | Test Le   |             |       |               | Hours)       | Total Dra   |              | (feet) |
| '                         | <u> </u>     |           |             |                   | <u> </u>        |             |               | "iviay no | ot be repre | esent | tative of a w | veirs io     | ng term yie | ıa.          |        |
|                           |              |           |             |                   | Ge              | ologic l    | Log -         | Free      | Form        |       |               |              |             |              |        |
| Depth for Surface Feet to | ce           |           |             |                   |                 |             |               | Descri    | ption       |       |               |              |             |              |        |

400

See attached Lithologic Logs

|             | Casings                                                    |       |                               |                                 |                                         |                                 |             |                 |      |  |
|-------------|------------------------------------------------------------|-------|-------------------------------|---------------------------------|-----------------------------------------|---------------------------------|-------------|-----------------|------|--|
| Casing<br># | Y I ' I Casing I Vine I Material I Casing Specifications I |       | Wall<br>Thickness<br>(inches) | Outside<br>Diameter<br>(inches) | Screen<br>Type                          | Slot Size<br>if any<br>(inches) | Description |                 |      |  |
| 1           | 0                                                          | 270.6 | Blank                         | PVC                             | OD: 2.375 in.  <br>Thickness: 0.218 in. | 0.218                           | 2.375       |                 |      |  |
| 1           | 270.6                                                      | 290.6 | Screen                        | PVC                             | OD: 2.375 in.  <br>Thickness: 0.218 in. | 0.218                           | 2.375       | Milled<br>Slots | 0.02 |  |

|                                      | Annular Material |             |                             |                                   |                    |  |  |  |  |  |
|--------------------------------------|------------------|-------------|-----------------------------|-----------------------------------|--------------------|--|--|--|--|--|
| Depth from Surface Fill Feet to Feet |                  | Fill        | Fill Type Details           | Filter Pack Size                  | Description        |  |  |  |  |  |
| 0                                    | 2                | Other Fill  | See description.            |                                   | Concrete Ready Mix |  |  |  |  |  |
| 2                                    | 21               | Cement      | Portland Cement/Neat Cement |                                   |                    |  |  |  |  |  |
| 21                                   | 269              | Other Fill  | See description.            |                                   | Sand/Bentonite mix |  |  |  |  |  |
| 269                                  | 291              | Filter Pack | 8 x 20                      |                                   |                    |  |  |  |  |  |
| 291                                  | 400              | Other Fill  | See description.            | e description. Sand/Bentonite mix |                    |  |  |  |  |  |

### Other Observations:

|                                       | Borehole Specifications |                            |  |  |  |  |  |  |
|---------------------------------------|-------------------------|----------------------------|--|--|--|--|--|--|
| Depth from<br>Surface<br>Feet to Feet |                         | Borehole Diameter (inches) |  |  |  |  |  |  |
| 0                                     | 100                     | 10.5                       |  |  |  |  |  |  |
| 100                                   | 320                     | 8                          |  |  |  |  |  |  |
| 320                                   | 375                     | 6                          |  |  |  |  |  |  |
| 375                                   | 400                     | 4                          |  |  |  |  |  |  |

|   |                                                                                                                             | Certification Statement                          |                            |               |            |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|---------------|------------|--|--|--|--|
| 1 | I, the under                                                                                                                | signed, certify that this report is complete and | accurate to the best of my | / knowledge a | and belief |  |  |  |  |
|   | Name                                                                                                                        | A B C LIO                                        | VIN DRILLING INC           |               |            |  |  |  |  |
| 1 | Person, Firm or Corporation                                                                                                 |                                                  |                            |               |            |  |  |  |  |
| 1 | 11                                                                                                                          | 80 E BURNETT STREET                              | SIGNAL HILL                | CA            | 90755      |  |  |  |  |
| 1 |                                                                                                                             | Address                                          | City                       | State         | Zip        |  |  |  |  |
| ] | Signed electronic signature received 04/05/2022 422904  C-57 Licensed Water Well Contractor Date Signed C-57 License Number |                                                  |                            |               |            |  |  |  |  |

| Attachments                                             |
|---------------------------------------------------------|
| OESTE-P Well Diagram 01.pdf - Well Construction Diagram |
| MWA_MW-OESTE-P Lith Log.pdf - Geologic Log              |
| OESTE-P Site Map.pdf - Location Map                     |

|   | DWR Use Only |                   |           |   |      |         |                   |     |        |    |
|---|--------------|-------------------|-----------|---|------|---------|-------------------|-----|--------|----|
| I | CSG#         | State Well Number |           |   | Site | e Code  | Local Well Number |     |        |    |
|   |              |                   |           |   |      |         |                   |     |        |    |
|   |              |                   |           | N |      |         |                   |     |        | w  |
|   | Lat          | titude De         | g/Min/Sec |   |      | Longitu | ıde               | Deg | /Min/S | ec |
|   | TRS:         |                   |           |   |      |         |                   |     |        |    |
|   | APN:         |                   |           |   |      |         |                   |     |        |    |
|   |              |                   |           |   |      |         |                   |     |        |    |



A. 4176 Warbler Road
P.O. Box 294049
Phelan, CA 92329
P. (760) 868-1212
F. (760) 868-2323
W. www.pphcsd.org

## Water Operations Manager's Report September 2023

#### **Introduction**

The Phelan Piñon Hills Community Services District (District) maintains a large water distribution system that includes over three hundred & forty miles of water lines. The following are District statistics and information related to the operations of this distribution system and the quality of the water supplied to District customers.

#### **Summary**

The District's water distribution system is in compliance with the State Water Resources Control Board- Division of Drinking Water, The Environmental Protection Agency, the Safe Drinking Water Act, Cal OSHA, and all other governing agencies.

Current chlorine demand has remained low and steady due to routine maintenance and flushing. Chlorine demand is found by subtracting the chlorine residual from the total chlorine added to the water system. A low chlorine demand indicates water-free or nearly free of pathogenic microorganisms.

#### **Water Quality Samples**

The following is a summary of all water quality samples collected this month and any pertinent information related to said samples.

| 53 samples     |                                                                                                                                  |                                                                                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Monthly                                                                                                                          | All in compliance, Sampled Weekly                                                                                                                                                                |
| 6 samples      | Monthly                                                                                                                          | All in compliance, Sampled Weekly                                                                                                                                                                |
| 4 samples sets | Quarterly                                                                                                                        | All in compliance.                                                                                                                                                                               |
| 0 sample sets  | TBD                                                                                                                              | All in Compliance.                                                                                                                                                                               |
| 0 samples      | Yearly                                                                                                                           | All in compliance.                                                                                                                                                                               |
| 0 samples      | Every 3 Years                                                                                                                    | All in compliance.                                                                                                                                                                               |
| 0 samples      | Quarterly                                                                                                                        | All in compliance.                                                                                                                                                                               |
| 2 samples      | As needed                                                                                                                        | All in compliance.                                                                                                                                                                               |
| 8 samples      | As needed                                                                                                                        | All in Compliance.                                                                                                                                                                               |
| 14 samples     | Quarterly                                                                                                                        | All in Compliance.                                                                                                                                                                               |
| 1 samples      | As needed                                                                                                                        | All in Compliance.                                                                                                                                                                               |
| 0 samples      | As needed                                                                                                                        | All in Compliance                                                                                                                                                                                |
|                | 4 samples sets 0 sample sets 0 samples 0 samples 0 samples 2 samples 4 samples 4 samples 5 samples 6 samples 7 samples 7 samples | 4 samples sets Quarterly  0 sample sets TBD  0 samples Yearly  0 samples Every 3 Years  0 samples Quarterly  2 samples As needed  8 samples As needed  14 samples Quarterly  1 samples As needed |

### **Production and Service Order Report**

The following is a summary of the District's water production and service orders for the current month.

| Total Monthly Production         | 234.83 A. F. 12 % less than 2022                                  |
|----------------------------------|-------------------------------------------------------------------|
| 2022 Monthly Production          | 267.39 A. F.                                                      |
| USA's Marked                     | 502                                                               |
| Service Orders Completed         | 543 service orders completed                                      |
| Main/Service Line Leaks          | 55 service line leaks repaired. 6 Main line leak/ breaks repaired |
| Hydrant Repairs/Replacements     | 2 hydrant repaired/0 replaced                                     |
| Residential Meters Sold          | 6                                                                 |
| Commercial Meters Sold           | 0                                                                 |
| YTD Total Meters Sold (Calendar) | 37 (86 in 2022) (95 in 2021)                                      |
| Construction Meters Out          | 2                                                                 |
| Service Lines Replaced           | 0                                                                 |

#### **Job Code Summary**

| Job Code                                                    | <b>Total Completed</b> |  |
|-------------------------------------------------------------|------------------------|--|
| C-Lock - Lock                                               | 89                     |  |
| C-Read & Unlock-Open - Read & Unlock - Opening              | 5                      |  |
| C-Read & Unlock-OC-DM - Read & Unlock - Opening-OC-DM       | 46                     |  |
| D-Closing Read & Lck - Closing Read & Lock DO NOT USE       | 3                      |  |
| D-Closing Read-OC-DM - Closing Read & Lock-OC-DM DO NOT USE | 3                      |  |
| M- Investigate Lock - Verify Meter Still Locked             | 11                     |  |
| M- Verify Acct Class - Verify Account Class                 | 0                      |  |
| M- Water Audit - Audit Water Usage                          | 6                      |  |
| M-Backflow - Backflow Information                           | 0                      |  |
| M-Cost Estimate Req - Cost Estimate Request                 | 1                      |  |
| M-Data - Data Log                                           | 3                      |  |
| M-Bees- Bees                                                | 0                      |  |
| M-Investigate Leak - Investigate Leak                       | 0                      |  |
| M-Investigate No Wtr - Investigate No Water                 | 2                      |  |
| M-Lock No N/O Info - Meter Locked No New Owner Info         | 0                      |  |
| M-Low/No Consumption - Investigate Low/No Consumption       | 6                      |  |
| M-Meter Leaking - Meter Leaking                             | 0                      |  |
| M-Meter UTL - Buried - Meter UTL - Buried                   | 2                      |  |
| M-Pressure Ck Hi-Low - Pressure Check Hi-Low                | 1                      |  |
| M-R/R Angle Stop - Repair/ Replace Angle Stop               | 2                      |  |
| M-R/R Gate Valve - Repair/ Replace Gate Valve               | 2                      |  |
| M-Read - Read (do not update Read)                          | 1                      |  |
| M-Repair Svc Line - Repair Service Line                     | 55                     |  |
| M-Repair/Install Box - Meter Box                            | 4                      |  |
| M-Replace Serv Line - Replace Service Line                  | 0                      |  |
|                                                             |                        |  |

| M-Stake Meter Loc - Stake Meter Location                  | 2   |  |
|-----------------------------------------------------------|-----|--|
| M-Status - Status                                         | 13  |  |
| M-Turn off-Cust Req - Turn off - Customer Request         | 6   |  |
| M-UNLOCK – UNLOCK                                         | 24  |  |
| M-Verify Leak Repair - Verify Leak Repaired               | 1   |  |
| M-Water Loss Leak - Door Hanger Water Loss Leak           | 3   |  |
| M-Water Quality Taste - Water Quality - Taste             | 0   |  |
| S- Replace Register - Register Not Sending Signal         | 192 |  |
| S- Meter Downsize - Meter Downsizing                      | 0   |  |
| Service Change - Service Status Change                    | 13  |  |
| S-Replace Mtr & Reg - Replace Entire Meter Max Life Usage | 0   |  |
| S-Replace Reg Hotrod - Replace Register Hotrod Died       | 0   |  |
| S-Replace Register - Replace Register Mueller             | 0   |  |
| S-Replace Mtr- Replace Entire Meter Bottom Seal Leaking   | 0   |  |
| Grand Totals                                              | 543 |  |
|                                                           |     |  |

#### **Summary of Current Projects**

The following is a brief summary of all current and completed projects for the reported period

- Well Soundings at all wells are being done monthly
- Well 14 Production for September 0.30 AF, YTD 7.19 AF @ \$1055 per AF replacement C/Y 2023
- Valves and Hydrants Maintenance: 2 hydrants flushed and painted YTD Total-70
- Service line replacement program. 24 Replaced Calendar Year to Date, 11 Replaced Fiscal Year to Date
- Air-Vac maintenance & flushing program-0 Flushed & Maintenance YTD-0 of 336 Total Project 0% Complete
- Cla-Val automatic controls valves being systematically rebuilt as a water conservation measure- 24 Complete YTD Water savings from this project is 17 GPM and counting in conjunction with operational efficiency @ 7MG
- Water Meter Replacement Project- 5835 of 7204 Replaced 81 % Complete
- Tank 1C-2 Interior coating sand, blast, re-coat- 100% Complete
- Outfitting & Equipping of Mountain well (Well 17)- 98% Complete
- Well 15 Outfitting, and Equipping 75% Complete

#### **Projects Completed**

- Booster 3A-B Suction can hole repair- 100% Complete
- Well Meter and inter-tie Meter annual accuracy program FY 22/23- 100 % Complete
- Electrical Efficiency test performed @ every booster and well within the District- 100% Complete with summaries of notable replacements attached
- Oil Changes and greasing at all district wells 100% Complete Boosters 100 % Complete
- 0 Valves Turned this month as part of the district Valve Exercising Program, 41 Year to Date Turned of 4291
- 168 Dead ends flushed of 317 = every year no matter what < No goal, this is mandatory
- 1936 hydrants = 50 flushed this Year to Date 162 Painted Goal is 968 annually, this is done Bi-Annual
- Tank washouts of 10&11, 3B,2A-1,4B,3A,2A,4A,5A,1A-2,8A Complete

• The Fill Station Stats For Year to Date 2023



Well 15 Progression







## Well 15 & Pipeline Progress

October 2023 – Well conduits and well photos









# MWA Monitoring Wells

#### State of California

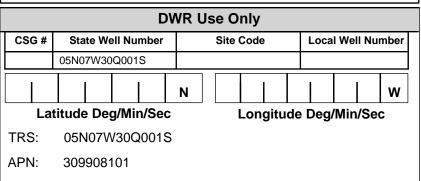
# Well Completion Report Form DWR 188 Submitted 4/4/2022 WCR2022-003846

| Owner's Well Num                      | ber O                                                                                                                    | RMW1           |                                         | D              | ate Work    | Began        | 01/31/                                                                                             | 2022      |      |             | Date Wo        | rk Ended    | 02/14/2   | 022        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|----------------|-------------|--------------|----------------------------------------------------------------------------------------------------|-----------|------|-------------|----------------|-------------|-----------|------------|
| Local Permit Agend                    | cy Sar                                                                                                                   | Bernardino Co  | ounty DF                                | PH - Environme | ental Healt | th Servi     | ces Safe                                                                                           | Drinking  | Wat  | ter Peri    | nit Section    |             |           |            |
| Secondary Permit                      | Agency                                                                                                                   | WP0037565      |                                         |                | Permit I    | Number       | 20211                                                                                              | 20819     |      |             | Pe             | ermit Date  | 11/30/2   | 021        |
| Well Owner                            | (must                                                                                                                    | remain coı     | nfiden                                  | ntial pursu    | ant to      | Wate         | er Code 13752) Planned Use and Activity                                                            |           |      |             |                | ctivity     |           |            |
| Name MOJAVE                           | WATER                                                                                                                    | AGENCY,        |                                         |                |             |              |                                                                                                    |           |      | Activ       | rity New       | Well        |           |            |
| Mailing Address                       | 13846                                                                                                                    | Conference Cei | nter Dr                                 |                |             |              |                                                                                                    |           |      | Plan        | ned Use        | Monitorin   |           |            |
|                                       |                                                                                                                          |                |                                         |                |             |              |                                                                                                    |           | _    | ' ' ' '     |                |             | 9         |            |
| City Apple Valle                      | у                                                                                                                        |                |                                         |                | State       | CA           | Zip                                                                                                | 92307     |      |             |                |             |           |            |
|                                       |                                                                                                                          |                |                                         |                | Well        | Loc          | ation                                                                                              |           |      |             |                |             |           |            |
| Address 535 C                         | ayucos R                                                                                                                 | D              |                                         |                |             |              |                                                                                                    |           | API  | N :         | 309908101      |             |           |            |
| City Pinon Hills                      | <br>S                                                                                                                    |                | Zip                                     | 92371          | County      | San I        | Bernardin                                                                                          | 0         | Tov  | _<br>wnship | 05 N           |             |           |            |
| Latitude 34                           | 29                                                                                                                       | 16.1699        | . '<br>N                                |                | -117        | 39           | 0.201                                                                                              |           | Rai  | nge         | 07 W           |             |           |            |
| Deg.                                  | Min.                                                                                                                     |                | _                                       | _              | <br>Deg.    | Min.         | Sec.                                                                                               |           |      | ction       | 30             |             |           |            |
| Dec. Lat. 34.487                      |                                                                                                                          | 200.           |                                         |                | -117.6500   |              | 000.                                                                                               |           |      |             | -              | San Bernai  | dino      |            |
| Vertical Datum                        | 020                                                                                                                      |                |                                         | rizontal Datum |             |              |                                                                                                    |           |      |             | urface Eleva   | ation       |           |            |
| l –                                   |                                                                                                                          |                | _                                       |                |             |              |                                                                                                    |           |      |             | Accuracy       | on Mothod   |           |            |
| Location Accuracy                     | Location Accuracy Unknown Location Determination GPS Elevation Determination Method ———————————————————————————————————— |                |                                         |                |             |              |                                                                                                    |           |      |             |                |             |           |            |
|                                       | Во                                                                                                                       | rehole Info    | rmati                                   | on             |             |              | V                                                                                                  | Vater     | Lev  | el ar       | nd Yield       | of Com      | pleted    | l Well     |
| Orientation Vert                      | tical                                                                                                                    |                |                                         | Specify        | ,           |              | Depth to                                                                                           | first wat | er   |             | 580            | (Feet be    | low surfa | ace)       |
| Drilling Method                       | Downhole                                                                                                                 | Rotary I       | Drilling F                              | -luid None     |             | —            | Depth to                                                                                           |           | -    |             |                | _           |           |            |
|                                       | Hammer                                                                                                                   |                | - · · · · · · · · · · · · · · · · · · · |                |             | $-\ $        | Water Le                                                                                           | evel _    |      | 54          | <b>–</b> ` ′   | Date Mea    | sured _   | 03/01/2022 |
|                                       |                                                                                                                          |                |                                         |                |             | $-\parallel$ | Estimate                                                                                           |           | _    |             | (GPM)          | Test Type   |           |            |
| Total Depth of Bor                    |                                                                                                                          |                |                                         | Feet           |             |              | Test Length (Hours) Total Drawdown (feet)  *May not be representative of a well's long term yield. |           |      |             |                |             |           |            |
| Total Depth of Cor                    | mpleted V                                                                                                                | Vell 640       |                                         | Feet           |             | _            | "May not                                                                                           | be repre  | esen | tative c    | or a well's lo | ng term yie | .a.       |            |
|                                       |                                                                                                                          |                |                                         | Ged            | ologic      | Log -        | Free F                                                                                             | orm       |      |             |                |             |           |            |
| Depth from<br>Surface<br>Feet to Feet |                                                                                                                          |                |                                         |                |             |              | Descrip                                                                                            | tion      |      |             |                |             |           |            |

See attached Lithologic Logs

|             |     |                     |             |          | Casing                                  | s                             |                                 |                 |                                 |             |
|-------------|-----|---------------------|-------------|----------|-----------------------------------------|-------------------------------|---------------------------------|-----------------|---------------------------------|-------------|
| Casing<br># |     | m Surface<br>o Feet | Casing Type | Material | Casings Specificatons                   | Wall<br>Thickness<br>(inches) | Outside<br>Diameter<br>(inches) | Screen<br>Type  | Slot Size<br>if any<br>(inches) | Description |
| 1           | 0   | 560                 | Blank       | PVC      | OD: 4.500 in.  <br>Thickness: 0.337 in. | 0.337                         | 4.5                             |                 |                                 |             |
| 1           | 560 | 640                 | Screen      | PVC      | OD: 4.500 in.  <br>Thickness: 0.337 in. | 0.337                         | 4.5                             | Milled<br>Slots | 0.02                            |             |

|     |                        |             | Annular Material            |                  |                    |
|-----|------------------------|-------------|-----------------------------|------------------|--------------------|
|     | from<br>face<br>o Feet | Fill        | Fill Type Details           | Filter Pack Size | Description        |
| 0   | 3                      | Other Fill  | See description.            |                  | Concrete Ready Mix |
| 3   | 22                     | Cement      | Portland Cement/Neat Cement |                  |                    |
| 22  | 549                    | Other Fill  | See description.            |                  | Sand/Bentonite mix |
| 549 | 652                    | Filter Pack | 8 x 20                      |                  |                    |
| 652 | 660                    | Other Fill  | See description.            |                  | Slough             |


#### Other Observations:

|                          | В   | orehole Specifications     |
|--------------------------|-----|----------------------------|
| Depth<br>Surf<br>Feet to | ace | Borehole Diameter (inches) |
| 0                        | 240 | 11.75                      |
| 240                      | 660 | 10                         |

|              | Certification                                    | n Si  | tatement                  |               |                      |
|--------------|--------------------------------------------------|-------|---------------------------|---------------|----------------------|
| I, the under | signed, certify that this report is complete and | accur | ate to the best of m      | y knowledge a | and belief           |
| Name         | A B C LIO                                        | VIN   | DRILLING INC              |               |                      |
|              | Person, Firm or Corporation                      |       |                           |               |                      |
| 11           | 80 E BURNETT STREET                              | SI    | GNAL HILL                 | CA            | 90755                |
|              | Address                                          |       | City                      | State         | Zip                  |
| Signed       | electronic signature received                    |       | 04/05/2022<br>Date Signed |               | 22904<br>ense Number |

|                                                                            | Щ |
|----------------------------------------------------------------------------|---|
| MWA_MW-OESTE-R Lith Log.pdf - Geologic Log                                 |   |
| OESTE-R Site Map_Redacted.pdf - Location Map - Redacted                    |   |
| OSTE-R Well Diagram 01_Redacted.pdf - Well Construction Diagram – Redacted |   |
| OSTE-R Well Diagram 01.pdf - Well Construction Diagram                     |   |
| OESTE-R Site Map.pdf - Location Map                                        |   |
| MWA_MW-OESTE-R Lith Log_Redacted.pdf - Geophysical Log Redacted            | _ |

**Attachments** 



#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION DIAGRAM LOG (feet) OF MATERIAL -Above Ground Monument Vaul Utility clearance backfill Concrete [0-3] Neat Cement -Grout with 5% Bentonite [3-22'] 4-inch Sch-80 PVC [0-560'] 10 Stainless Steel Centralizer SW-SAND WITH SILT AND GRAVEL (20/70/10) Brown · . . . 15 SM (10YR 4/3), dry to slightly moist, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; some coarse sand may be crushed gravel; gravel size indeterminate. SILTY SAND (5/75/20) Dark grayish brown (10YR $\mathsf{SM}$ 20 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded; trace gravel; micaceous. 22-SAND WITH SILT (0/90/10) Dark grayish brown SP-SM 25 (10YR 4/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SILTY SAND (0/80/20) Brown (10YR 4/3), dry, fine-. ... SM 30 to very fine-grained, well sorted / poorly graded, angular; micaceous. SILTY SAND (0/60/40) Dark yellowish brown (10YR ۰۰. ـــــــ SM 35 3/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; grains predominantly granitic. SP-SN SAND WITH SILT (0/90/10) Brown (10YR 4/3), dry,

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 40 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SAND (5/90/5) Dark grayish brown (10YR 4/2), dry, SP 45 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace silt; trace gravel. SAND WITH SILT (5/85/10) Dark grayish brown SP. SM 50 (10YR 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SW-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), SM 55 dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP-SAND WITH SILT AND GRAVEL (20/70/10) Brown SM 60 (10YR 4/3), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; some coarse sand may be crushed gravel; few possible schist clasts; few carbonate-cemented nodules, SAND WITH SILT (0/90/10) Dark yellowish brown SP-SM 65 (10YR 4/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Same as above. SM 70 SAND (0/95/5) Brown (10YR 4/3), dry, fine-grained, SP 75 trace medium to coarse, well sorted / poorly graded, angular to subangular; trace silt. SP-SN SAND WITH SILT (0/90/10) Yellowish brown (10YR

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 80 5/4), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular. SAND (0/95/5) Brown (10YR 5/3), dry, fine- to SP 85 coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt. SILTY SAND (0/85/15) Brown (10YR 5/3), dry, fine-SM 90 to coarse-grained, poorly sorted / well graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Light olive brown (2.5Y 5/3), fine- to SP 95 medium-grained, trace coarse, moderately sorted/graded, angular to subangular; trace silt. SW-SAND WITH SILT AND GRAVEL (30/60/10) Light SM 100 olive brown (2.5Y 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; some coarse sand may be crushed gravel. SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), dry, ML105 nonplastic; sand fine- to medium-grained, predominantly fine. .... SANDY SILT (0/30/70) Sand fine-grained, trace ML110 medium to coarse, otherwise same as above. SILTY SAND (0/70/30) Dark grayish brown (2.5Y ---SM 115 4/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SP SAND (0/95/5) Grayish brown (2.5Y 5/2), dry,

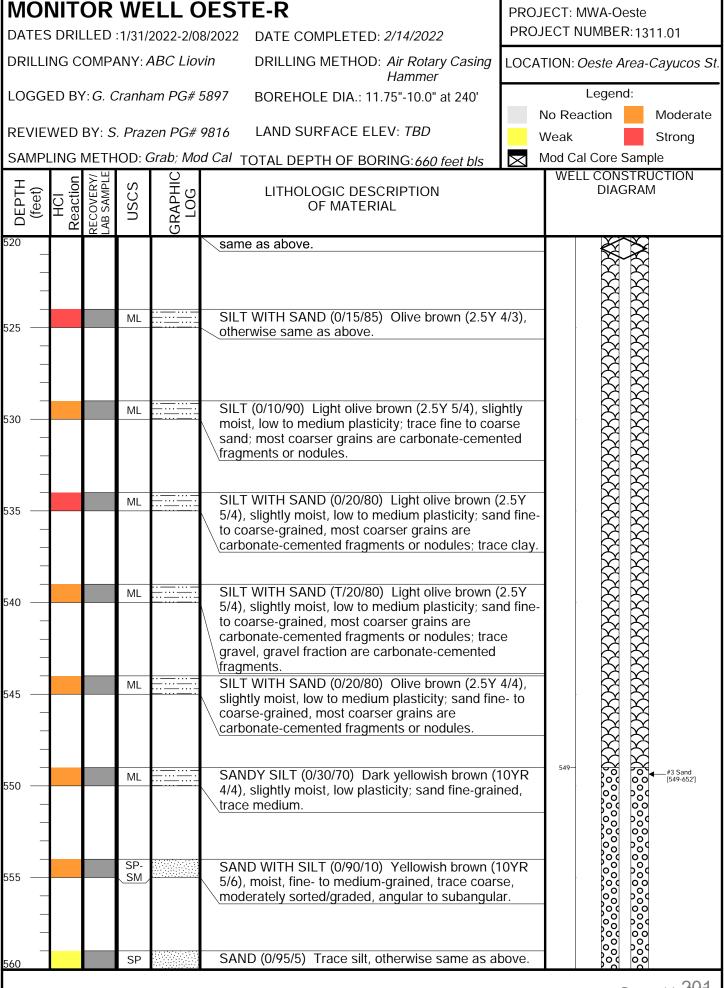
#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 120 fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace silt. SAND (0/95/5) Olive brown (2.5Y 4/3), dry, fine- to SW •. . . . . . . : 125 coarse-grained, poorly sorted / well graded, angular to subangular; trace silt. SP-SAND WITH SILT (10/80/10) Brown (10YR 4/3), dry, 130 SM fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (5/75/20) Yellowish brown (10YR 5/4), . .\_\_\_ $\mathsf{SM}$ 135 dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (10/60/30) Dark grayish brown (2.5Y ---SM 140 4/2), otherwise same as above. · :: ---SILTY SAND (5/65/30) Otherwise same as above. SM 145 SP-SAND WITH SILT (0/90/10) Dark grayish brown 150 $\mathsf{SM}$ (2.5Y 4/2), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; micaceous. SILTY SAND (0/80/20) Olive brown (2.5Y 4/3), dry, ---SM 155 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SN SAND WITH SILT (0/90/10) Light olive brown (2.5Y

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 160 5/3), otherwise same as above. SP-SAND WITH SILT (0/90/10) Fine- to very 165 SM fine-grained, trace medium, well sorted / poorly graded, otherwise same as above. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SP. SM 170 5/3), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), SM 175 dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (5/75/20) Brown (10YR 4/3), dry, $\mathsf{SM}$ 180 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Olive brown (2.5Y 4/4), dry, fine- to SP 185 coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; possible trace gravel, some coarse sand may be crushed gravel. SILTY SAND WITH GRAVEL (30/40/30) Brown SM 190 (10YR 5/3), dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; some coarse sand may be crushed gravel. SP-SAND WITH SILT (5/85/10) Yellowish brown (10YR 195 SM 5/4), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP SAND (0/95/5) Yellowish brown (10YR 5/4), dry,

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION RECOVERY/ LAB SAMPLE GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) OF MATERIAL 200 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; trace silt. SAND (0/95/5) Fine- to coarse-grained, SP 205 predominantly fine, moderately sorted/graded, otherwise same as above. SAND (0/95/5) Olive brown (2.5Y 4/4), dry, fine- to SP 210 medium-grained, predominantly fine, moderately sorted/graded, angular; trace silt. SW-SAND WITH SILT (10/80/10) Olive brown (2.5Y 4/3), 215 SM dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SAND (0/95/5) Yellowish brown (10YR 5/4), dry, fine-SW •. •. •. 220 to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt. SAND WITH SILT (0/90/10) Brown (10YR 5/3), dry, SP-SM 225 fine- to very fine-grained, trace medium, well sorted / poorly graded, angular; approximately 10%-20% gravel noted at top of core barrel (223-223.5 feet), consistent with cuttings from grab sample. SAND (5/90/5) Light yellowish brown (10YR 6/4), dry, SP 230 fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; trace fine gravel, some coarse sand may be crushed gravel. SAND (5/90/5) Yellowish brown (10YR 5/4), dry, fine-SW °. ; ; ; 235 to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace fine gravel, some coarse sand may be crushed gravel. SW-SM SAND WITH SILT (10/80/10) Otherwise same as

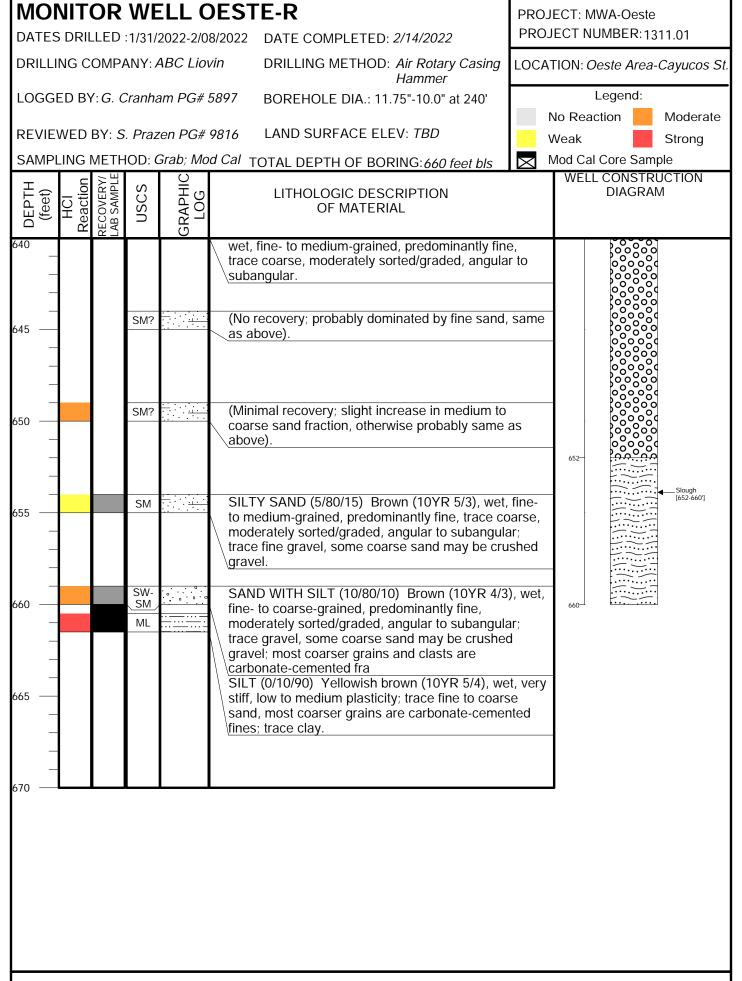
#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 240 above; gravel appears to be broken fragments of larger clasts. SAND WITH SILT (0/90/10) Yellowish brown (10YR SP-245 SM 5/4), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SAND (T/95/5) Dark yellowish brown (10YR 4/4), dry, SP 250 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. SP-SAND WITH SILT (0/90/10) Dark yellowish brown SM 255 (10YR 4/4), dry, fine-grained, well sorted / poorly graded, subangular. SAND (10/90/T) Dark grayish brown (2.5Y 4/2), dry, SW 260 fine- to coarse-grained, poorly sorted / well graded, SM angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. SILTY SAND (0/80/20) Olive brown (2.5Y 4/4), dry, medium dense, fine- to very fine-grained, well sorted / poorly graded, subangular. • • • SM 265 SILTY SAND (0/80/20) Brown (10YR 5/3), dry, fineto medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. ----SANDY SILT (0/30/70) Light olive brown (2.5Y 5/3), ML270 dry, nonplastic; sand fine- to very fine-grained, trace medium to coarse. • • • • • SILTY SAND (0/60/40) Light olive brown (2.5Y 5/3), SM 275 dry, fine- to very fine-grained, trace medium, well sorted / poorly graded, angular. - 1 SM SILTY SAND (0/60/40) Dark grayish brown (2.5Y

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 280 4/2), dry, fine- to very fine-grained, with coarse, gap graded, angular to subangular; possibly interbedded. SANDY SILT (0/25/75) Light olive brown (2.5Y 5/3), ML 285 dry, nonplastic; sand fine- to very fine-grained, trace medium. <del>-------</del> SANDY SILT (0/30/70) Grayish brown (2.5Y 5/2), ML 290 otherwise same as above. · : ...\_ SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, SM 295 fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SANDY SILT (0/40/60) Dark grayish brown (2.5Y ML300 4/2), dry, low plasticity; sand very fine- to medium-grained. SANDY SILT (0/40/60) Dark grayish brown (2.5Y ML305 4/2), dry, nonplastic; sand very fine- to coarse-grained, predominantly fine. · : .<u>...</u> SILTY SAND (0/80/20) Dark grayish brown (2.5Y $\mathsf{SM}$ 310 4/2), dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Grayish brown (2.5Y 315 SM 5/2), dry, fine-grained, trace medium to coarse, well sorted / poorly graded, angular. SAND WITH SILT (0/90/10) Same as above. SP-SN


#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 320 SP-SAND WITH SILT (0/90/10) Light olive brown (2.5Y 325 SM 5/3), fine-grained, trace medium, otherwise same as · : . . . . SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), dry, SM 330 fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Olive brown (2.5Y 4/3), SM 335 dry, fine- to very fine-grained, well sorted / poorly graded, angular; micaceous. SAND WITH SILT (5/85/10) Yellowish brown (10YR SP-SM 340 5/4), dry, medium dense, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace gravel to 1" length; thin silty interbed at 339.3 SILT WITH SAND (0/20/80) Dark yellowish brown ML345 (10YR 4/4), dry, low to medium plasticity; sand fine-grained; trace clay. SANDY SILT (0/40/60) Low plasticity; sand fine- to ML350 medium-grained, trace coarse, otherwise same as above. . . . . . . SILTY SAND (5/75/20) Yellowish brown (10YR 5/4), SM 355 dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. SP-SN SAND WITH SILT (0/90/10) Brown (10YR 5/3), dry,

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 360 fine-grained, trace medium, well sorted / poorly graded, angular to subangular. SILTY SAND (0/75/25) Grayish brown (10YR 5/2), SM 365 dry, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP-SAND WITH SILT (5/85/10) Brown (10YR 4/3), trace SM 370 gravel, otherwise same as above. · : <u>-</u>--SILTY SAND (0/85/15) Light olive brown (2.5Y 5/4), $\mathsf{SM}$ 375 dry, fine- to medium-grained, trace coarse, moderately sorted/graded, angular to subangular. SAND (10/85/5) Light olive brown (2.5Y 5/4), dry, SW •. •. •. 380 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; trace gravel, some coarse sand may be crushed gravel. ·::<u>-</u> SILTY SAND (0/60/40) Brown (7.5YR 4/4), dry, SM 385 fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SM 390 5/4), dry, fine- to very fine-grained, trace medium, well sorted / poorly graded, angular. • : ... SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), dry, SM 395 fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular; possible trace gravel, some coarse sand may be crushed gravel. SAND WITH SILT (0/90/10) Light olive brown (2.5Y SP-SN

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 400 5/3), dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular; micaceous. • : ---SILTY SAND (10/70/20) Grayish brown (2.5Y 5/2), SM 405 dry, fine-grained, trace medium, with coarse, gap graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel; possibly interbedded. SANDY SILT (0/30/70) Olive brown (2.5Y 4/3), dry, ML 410 nonplastic; sand fine- to medium-grained, predominantly fine. ∵...\_ SILTY SAND (5/75/20) Olive brown (2.5Y 4/3), dry, SM fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. · : : <u>- - -</u> SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, SM 420 fine- to coarse-grained, poorly sorted / well graded, angular to subangular; possible trace gravel, some coarse sand may be crushed gravel. SILTY SAND (0/85/15) Light olive brown (2.5Y 5/4), SM 425 dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; with small carbonate nodules. · :: --SILTY SAND (0/70/30) Dark grayish brown (2.5Y SM 430 4/2), dry, fine- to very fine-grained, well sorted / poorly graded, angular to subangular. SP-SAND WITH SILT (0/90/10) Very dark grayish brown 435 SM (2.5Y 3/2), dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular. غند . SM SILTY SAND (0/70/30) Very dark grayish brown 440


#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC DEPTH Reaction **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 440 (2.5Y 3/2), dry, fine- to very fine-grained, well sorted / poorly graded, subangular. SP-SAND WITH SILT (0/90/10) Olive brown (2.5Y 4/3), 445 SM dry, fine- to very fine-grained, trace medium to coarse, well sorted / poorly graded, angular. SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), dry, ML 450 nonplastic; sand very fine- to coarse-grained, predominantly fine; coarser grains are carbonate-cemented fragments. SANDY SILT (0/30/70) Olive brown (2.5Y 4/4), ··· ML 455 otherwise same as above. SANDY SILT (0/30/70) Same as above. ML 460 SW-SAND WITH SILT (5/85/10) Light olive brown (2.5Y ٠. ، . . 465 SM 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace gravel, some coarse sand may be crushed gravel. . . . . . . SILTY SAND (5/75/20) Light olive brown (2.5Y 5/3), SM 470 dry, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel, gravel fraction composed of carbonate-cemented nodules, some coarse sand may be crushed gr SILTY SAND (0/80/20) Olive (5Y 4/3), dry, fine- to ٠. ــــــ SM 475 medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SP SAND (0/95/5) Light olive brown (2.5Y 5/3), dry,

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED: 1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample RECOVERY/ LAB SAMPLE WELL CONSTRUCTION GRAPHIC Reaction DEPTH **USCS** LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) LOG OF MATERIAL 480 fine-grained, trace medium, well sorted / poorly graded, angular; trace silt. SP-SAND WITH SILT (0/90/10) Otherwise same as 485 SM above. SILTY SAND (0/80/20) Olive brown (2.5Y 4/4), dry, SM 490 fine-grained, trace medium to coarse, well sorted / poorly graded, angular; with probable thin silt interbed(s) based on small fragments of fines. ت. ن SILTY SAND (0/75/25) Yellowish brown (10YR 5/4), $\mathsf{SM}$ 495 dry, fine- to very fine-grained, well sorted / poorly graded, angular. SILT WITH SAND (0/20/80) Light olive brown (2.5Y ML 500 5/3), dry, low plasticity; sand fine- to medium-grained, ML predominantly fine. SANDY SILT (0/30/70) Sand fine- to coarse-grained, predominantly fine, otherwise same as above: stiff: with few small carbonate nodules. SILT WITH SAND (0/20/80) Light olive brown (2.5Y ML505 5/3), dry, low plasticity; sand fine- to medium-grained, predominantly fine. SILTY SAND (0/60/40) Olive brown (2.5Y 4/3), dry, SM 510 fine-grained, trace medium, well sorted / poorly graded, angular. SILT WITH SAND (0/20/80) Olive brown (2.5Y 4/4), ML515 dry to slightly moist, low to medium plasticity; sand fine- to coarse-grained, most coarser grains are carbonate-cemented fragments or nodules. ML SILT WITH SAND (0/15/85) Low plasticity, otherwise



#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION GRAPHIC RECOVERY/ LAB SAMPLE Reaction DEPTH LITHOLOGIC DESCRIPTION **DIAGRAM** (feet) 90 USC OF MATERIAL 560 0.020-Inch Slotted Screen [560-640'] SAND (5/95/T) Fine- to coarse-grained, poorly sorted SW 565 / well graded, trace fine gravel, otherwise same as above. SAND (0/100/T) Lacks gravel, otherwise same as SW 570 above SAND (5/95/T) Trace fine gravel, otherwise same as SW above. · : \_\_\_ SILTY SAND (0/80/20) Dark yellowish brown (10YR SM 580 4/4), wet, fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular. SW-SAND WITH SILT (10/80/10) Yellowish brown (10YR 585 SM 5/6), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace fine gravel, some coarse sand may be crushed gravel. GRAVEL WITH SAND (75/20/5) Yellowish brown GP 590 (10YR 5/4), wet, fine, larger clasts may be broken by drilling; sand fine- to coarse-grained; trace silt. SAND WITH GRAVEL (20/75/5) Yellowish brown SW 595 (10YR 5/4), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; gravel fine, but larger clasts may be broken by drilling; some coarse sand may be crushed gravel. GP-GM GRAVEL WITH SILT AND SAND (60/30/10)

#### MONITOR WELL OESTE-R PROJECT: MWA-Oeste PROJECT NUMBER: 1311.01 DATES DRILLED :1/31/2022-2/08/2022 DATE COMPLETED: 2/14/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Air Rotary Casing LOCATION: Oeste Area-Cayucos St. Hammer Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 11.75"-10.0" at 240' No Reaction Moderate REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Weak Strona SAMPLING METHOD: Grab; Mod Cal TOTAL DEPTH OF BORING: 660 feet bls Mod Cal Core Sample WELL CONSTRUCTION RECOVERY/ LAB SAMPLE GRAPHIC Reaction DEPTH LITHOLOGIC DESCRIPTION **DIAGRAM** LOG (feet) USC! OF MATERIAL 600 Yellowish brown (10YR 5/4), wet, fine, larger clasts may be broken by drilling; sand fine- to coarse-grained; 4-inch cobble recovered. SILTY SAND (5/70/25) Brown (10YR 5/3), wet, fine-SM 605 to coarse-grained, poorly sorted / well graded, angular to subangular; trace fine gravel, some coarse sand may be crushed gravel. SAND WITH GRAVEL (40/55/5) Pale brown (10YR SW 610 6/3), wet, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace silt; gravel fine, but larger clasts may be broken by drilling; some coarse sand may be crushed gravel; locally carb SILTY SAND (0/60/40) Light olive brown (2.5Y 5/4 to SM 615 5/6), wet, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; fine sand fraction may be higher based on poor cuttings recovery. SILTY SAND (0/60/40) Same as above. SM 620 . . . . . . . . . . . (No recovery; probably dominated by fine sand, same SM? 625 as above). (Minimal recovery; slight increase in medium to SM? 630 coarse sand fraction, otherwise probably same as above). SAND WITH SILT (0/90/10) Yellowish brown (10YR SP-635 SM 5/4), wet, fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular. . ... SM SILTY SAND (0/85/15) Yellowish brown (10YR 5/4)





HARGIS+ASSOCIATES, INC. HYDROGEOLOGY • ENGINEERING

FIGURE 4.

SCHEMATIC CONSTRUCTION DIAGRAM,

MONITOR WELL OESTE-R

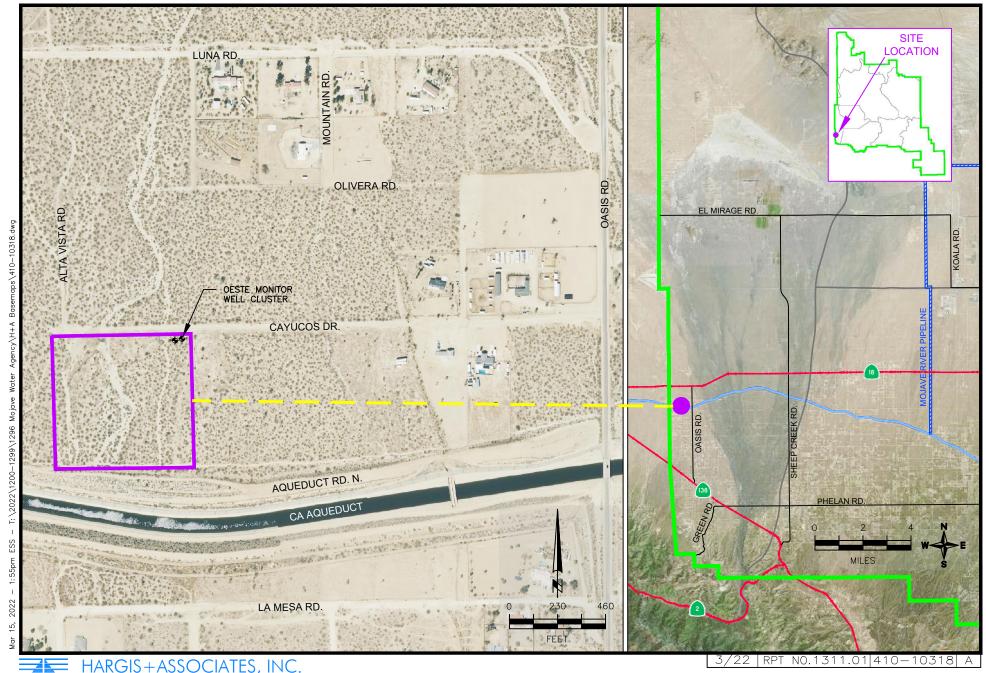



FIGURE 1.
WELL SITE LOCATION MAP







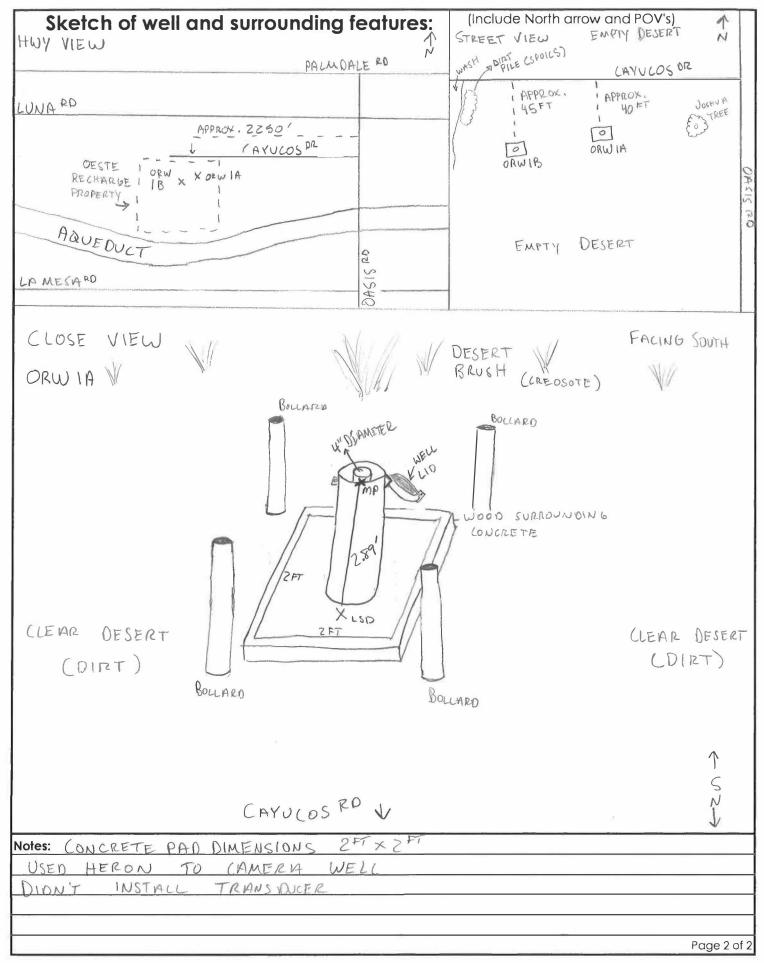




swn: 05N07W30Q01

Common Name: OESTE RECHARGE WELL
Date: 3/23/2022 ORW IA

Completed By: M.Johnson
Lat/Long (DMS) & Datum: 34° 29' 110. 139"


Log Completed

### **MWA WELL CANVASSING SHEET**

| Site Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | APN: 309908101                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cross Street:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OASIS RD                                                                                                                                                                                                                              |
| General Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATED TOWARD NORTHEAST SIDE OF PROPERTY                                                                                                                                                                                             |
| Name of GPS Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESTE RECHARGE WELL IA  Satellites: 15 / Z4 (OLD) Accuracy: 0.6IN / 1.0TN Points: 126010)                                                                                                                                             |
| GPS Measurement Point Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LSD IS X ON CONCRETE PAD, NORTH SIDE OF CASING                                                                                                                                                                                        |
| Well Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Domestic Agricultural Production X Monitoring                                                                                                                                                                                         |
| Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Active $\boxed{\hspace{0.1cm}}$ Inactive Pump in Well: $\boxed{\hspace{0.1cm}}$ Yes $\boxed{\hspace{0.1cm}}$ No                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Status: $A=atmos.press.B=tide$ stage $D=dry$ $E=recently$ flowing $F=flowing$ $G=nearby$ recently flowing $t=injector$                                                                                                           |
| Site Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | site M=plugged N=measdiscontinued O=obstructed P=pumpling R=recently pumped S=nearby pumping T=nearby recently pumping V=foreign substance W=well destroyed X=affected by surface water Z=other                                       |
| Casing Diameter (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Casing Material:                                                                                                                                                                                                                      |
| Height of Measuring Point (FT ALSD):  *ALSD - above land surface datum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Photograph of Measuring Point:                                                                                                                                                                                                        |
| Measuring Point Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Measurement Method: MWH. ET. 800.                                                                                                                                                                                                     |
| Description.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T.O.C. NORTH SIDE                                                                                                                                                                                                                     |
| LSD Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X ON CONCRETE PAD, NORTH SIDE OF CASING                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |
| LSD Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X ON CONCRETE PAD, NORTH SIDE OF CASING                                                                                                                                                                                               |
| LSD Description:  Depth to Water (feet):  Depth to Water (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X ON CONCRETE PAD, NORTH SIDE OF CASING  S41.35' BMP                                                                                                                                                                                  |
| LSD Description:  Depth to Water (feet):  Depth to Water (feet):  DTW Calculation:  S4  Total Depth of Well (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X ON CONCRETE PAD, NORTH SIDE OF CASING  SY1.35' BMP 538.46' BLSD Time: 09:04  SY1.35' BMP 538.46' BLSD Datum(PS)/PDT  11.35' - 2.89' = 538.46'  G33.2' BMP G30.31' BLSD                                                              |
| LSD Description:  Depth to Water (feet):  Depth to Water (feet):  DTW Calculation:  Sulfation Su | X ON CONCRETE PAD, NORTH SIDE OF CASING  SY1.35' BMP 538.46' BLSD Time: 09:04  SY1.35' BMP 538.46' BLSD Datum(PS)/PDT  11.35' - 2.89' = 538.46'  G33.2' BMP G30.31' BLSD                                                              |
| LSD Description:  Depth to Water (feet):  Depth to Water (feet):  DTW Calculation:  S4  Total Depth of Well (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X ON CONCRETE PAD, NORTH SIDE OF CASING  SY1.35' BMP 538.46' BLSD Time: 09:04  SY1.35' BMP 538.46' BLSD Datum(PS)/PDT  11.35' - 2.89' = 538.46'  G33.2' BMP G30.31' BLSD                                                              |
| LSD Description:  Depth to Water (feet):  Depth to Water (feet):  DTW Calculation:  Sulfation Su | X ON CONCRETE PAD, NORTH SIDE OF CASING  S41.35 BMP                                                                                                                                                                                   |
| LSD Description:  Depth to Water (feet): Depth to Water (feet): DTW Calculation:  Start Total Depth of Well (feet): *BMP - below measuring point, BLS Total Depth Calculation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X ON CONCRETE PAD, NORTH SIDE OF CASING  SY1.35' BMP 538.46' BLSD Time: 09:04  SY1.35' BMP 538.46' BLSD Datum(PST/PDT)  11.35' - 2.89' = 538.46'  G33.2' BMP G30.31' BLSD  D-below land surface datum  G33.2' - 2.89' = 630.31'  MANY |

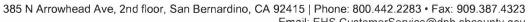
(Continued on other side)

Page 1 of 2






















Email: EHS.CustomerService@dph.sbcounty.gov

www.SBCounty.gov www.sbcounty.gov/dph/dehs Phone: (800) 442-2283



### Public Health Environmental Health Services

### MW-2 APPLICATION FOR WELL PERMIT

|                                            | THIS SECTION TO BE               |                   |                         |                | T • HEALTH PERMITS A           | RE NOT TRANS        | SFERABLE            |                            |  |  |  |
|--------------------------------------------|----------------------------------|-------------------|-------------------------|----------------|--------------------------------|---------------------|---------------------|----------------------------|--|--|--|
| Property Owner N                           | Mojave Water Ag                  | 1-                | PROPE                   | RTY            | NFORMATION                     |                     | Phone Numb          | er (760) 946-7061          |  |  |  |
| Site Address 52                            | 5 Cayucos Rd                     | gency             |                         | City F         | Pinon Hills                    | State CA            | Zip 9237            |                            |  |  |  |
| Assessor's Parcel                          | Number 000004.6                  | \ <u></u>         |                         | Email          | PINON MIIIS                    | CA                  | 9237                |                            |  |  |  |
|                                            | Number 30990810                  | )1                |                         |                |                                |                     |                     |                            |  |  |  |
| Township                                   | N/S Tier 5N                      |                   |                         | E/W F          | 7W                             | Section 30          |                     |                            |  |  |  |
| Well Head                                  | Latitude (decimal) 34.487        | 7845              |                         |                | tude (decimal) -117.650        | 374                 |                     |                            |  |  |  |
| Property Owner's                           | Mailing Address 13846 Cor        | nference Cent     | er Dr.                  | City /         | Apple Valley                   | State CA            | <sup>Zip</sup> 9230 | 7                          |  |  |  |
| Name of Consulta                           | nt                               | 2 - C             | ONSUL                   | TANT           | INFORMATION                    |                     | Phone Number        | er                         |  |  |  |
| Addross                                    | <sup>nt</sup> Hargis and Ass     | sociates, In      | IC.                     |                | SPRAZEN@HAF                    | RGIS.COM            |                     | er 858-410-7404            |  |  |  |
| Address 9171                               | Towne Centre D                   | Orive, Suite      | 375                     |                | San Diego                      | State CA            | <sup>Zip</sup> 9212 | .2                         |  |  |  |
| Name of Driller A                          | BC Liovin Drillin                | a loc             | RED W                   | ELL L          | PRILLER INFORMATION            | STUDE STATE         | Phone Numb          | <sup>er</sup> 562-981-8575 |  |  |  |
| Email                                      | DC EIOVIN DIIIIIII               | g, iiic.          |                         | نام ماد        | @ahadrilling.com               | C-57 License Num    | iber 42200          | 302-901-0373               |  |  |  |
|                                            |                                  |                   |                         | -              | @abcdrilling.com               |                     |                     |                            |  |  |  |
| Return well pe                             | ermit to   Well Driller          | ☐ Consu           |                         |                | Property Owner  Property Owner | Return by           | ☐ Mail              | ■ Email                    |  |  |  |
| New                                        |                                  |                   |                         |                |                                |                     |                     |                            |  |  |  |
| Date of Work 1/10/2022 Start Date 1/10/202 |                                  |                   |                         |                | Completion Date 1/31/2022      | Estimated groundwa  | ater depth 55       | 0-600 ft                   |  |  |  |
|                                            |                                  |                   |                         |                | TYPE                           |                     |                     | E COOK                     |  |  |  |
| ☐ Agriculture                              |                                  | ☐ Geoth           | ermal                   |                |                                | Industrial          |                     |                            |  |  |  |
| ☐ Cathodic                                 | DW0/0': 6 / / /                  | ☐ Horizo          | ntal                    |                |                                | Monitoring/Obs      | ervation            |                            |  |  |  |
| Use:                                       | PWS/City – <b>Specify Use Be</b> |                   | ential – c<br>unity wel |                | be used as a L                 | Test Other          |                     |                            |  |  |  |
|                                            |                                  |                   | 6 – Al                  | NNUL           | AR SEAL                        |                     | THE THREE           | <b>最级表现</b>                |  |  |  |
| Seal Depth (ft.                            | )21                              |                   |                         |                |                                |                     |                     |                            |  |  |  |
| ☐ Driven Cor                               | nductor Diameter (in.)           |                   |                         |                | Wall (gauge) (in.)SCH 8        | 30 🔳 Drilling me    | ethod Air           | Rotary                     |  |  |  |
| Sealing Ma                                 | aterialCement Bent               | conite Gro        | out                     |                | Thickness (in.) 3              |                     |                     |                            |  |  |  |
| Sealing material                           | shall be placed in one conti     | nuous pour. Annul | ar seal tl              | hicknes        | ss must be at least 2 inches   | for public water su | upply wells.        |                            |  |  |  |
|                                            | ITEMS 7 THROUGH                  | 10 TO BE ESTIN    |                         |                | NEW WELLS, EXACT FO            | OR ALL OTHER        | WELLS               | Para Para                  |  |  |  |
| Proposed Depth o                           | f Well (ft.) 650                 | Existing D        |                         |                | 1310113                        | Diameter of Bo      | re (in.) 10         |                            |  |  |  |
|                                            |                                  | With the second   | - CAS                   | ING II         | NSTALLED                       | er Brown            |                     | ASST THE COLUMN            |  |  |  |
| Casing Mat                                 | erial                            | WWA/APPI          | V 8                     |                |                                |                     |                     |                            |  |  |  |
|                                            | m (ft.)                          | To (ft.)          |                         |                | Diameter (in.)                 |                     | Wall (Ga            |                            |  |  |  |
| 5                                          | 560                              | 0                 |                         | _              | 4                              |                     | SCH                 | 80                         |  |  |  |
| Gravel Pack                                | Yes                              | □ No              |                         |                | From (ft.) 650                 | To (ft )            | To (ft.) 555        |                            |  |  |  |
| Specify Other                              | Rentonite So                     |                   |                         |                |                                | To (ft.)            |                     |                            |  |  |  |
| Backfill Materia                           | a Demonite Se                    | aı                |                         | From (ft.) 555 |                                |                     | <u></u>             |                            |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 - PERFORATION                                                   | IS (list all if a                 | pplicable)                                    |                                   |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------|--------------------------------|
| From (ft.) 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | To (ft.)640                                                       | Well Screen S                     | Size 0.020                                    | Pumping Rate                      | (gpm) unkown                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 - SEALED ZONI                                                  | ES (list all if a                 | applicable)                                   |                                   |                                |
| From (ft.) 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | To (ft.) 0                        |                                               |                                   |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 – P                                                            | LOT PLAN                          |                                               |                                   | <b>经生产工作的</b>                  |
| a) In perspective to the well site, so<br>(include abandoned wells), severand ponds, watercourses and a second | vage disposal systems (s                                          |                                   |                                               |                                   |                                |
| b) Indicate the distance, in <b>feet</b> , of scale (½ inch = 100 feet). Show 500 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                   |                                               |                                   |                                |
| c) None of the above is within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 feet.                                                         |                                   | ,                                             |                                   |                                |
| d) Solid or Liquid Disposal Site wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   | ☐ Yes                             | ☑ No                                          | Location                          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 - METHOD OF CONST                                               |                                   |                                               |                                   | ha madhad abab ba ta           |
| Provide the method of construction/destr<br>accordance with the standards recomme<br>standards shall also be followed for publi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nded in the California De                                         |                                   | ·                                             |                                   |                                |
| I will submit water well drillers report to E well/borings in accordance with the perm Monitoring wells will be constructed with 2" or 4" flus bentonite plug will be placed and hydrated with clean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | it application and Water \<br>h thread PVC, filter pack will be c | Well Standard<br>lean washed sand | s Bulletin 74-81 & 7 and placed with tremie t | 74-90.<br>to at least 2' above th | ne slotted well screen, a 2-5' |
| pipe from the top of the bentonite to within 2' of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   | ill finish the install            | lation.                                       |                                   | nesimenselsen som              |
| I have read this application and agree to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                   |                                               | formed.                           |                                |
| Property Owner's XII. Haussen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                                   | Da                                            | ite 11/29/2021                    | 1                              |
| Print Property Owner's Name  Robert Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mpson                                                             |                                   |                                               | 11 011 0001                       |                                |
| C-57 Contractor's X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A)                                                                |                                   | Da                                            | te 12/13/2                        | 2021                           |
| Print Contractor's Name  Ivan Liovi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{n}$                                                     |                                   |                                               |                                   | 200                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ISPOSITION OF PERMIT                                              | Γ For Office                      | Hea Only DISBO                                | SITION OF PER                     | OMIT                           |
| X Sent to Water Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISPOSITION OF FERMI                                               | roi Office                        | Permit Number:                                | 2021120819                        |                                |
| Water Agency conditions or recommendat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ions attached                                                     |                                   | Expiration Date:                              | 6-14-2022                         |                                |
| Denied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ions attached                                                     |                                   | WP Number:                                    | WP0037565                         | 5                              |
| Approved subject to the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |                                   | VVI INDITIDEL.                                | 1 111 0007 000                    | ,                              |
| Notify the Division's Safe Driving A.  of the following operations: (I appointments may result in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nspections are conducted M                                        |                                   |                                               |                                   |                                |
| Prior to sealing of the ani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nular space or filling of the co                                  | onductor casing                   |                                               |                                   |                                |
| After installation of the su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rface protective slab and pu                                      | mping equipme                     | nt.                                           |                                   |                                |
| After installation of the su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rface features.                                                   |                                   |                                               |                                   |                                |
| <ul> <li>During destruction of wel</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, prior to pouring the sealin                                    | g material.                       |                                               |                                   |                                |
| B. 🕅 Submit to the Division, within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thirty (30) days after comple                                     | etion of work, a                  | copy of:                                      |                                   |                                |
| 🛚 Water Well Driller's Repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rt Bacterial Analys                                               | sis 🗌 Inc                         | organic Chemical Ana                          | llysis 🔲 Ge                       | eneral Physical                |
| Radiological Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ☐ Nitrate as Nitro                                                | gen 🗌 Or                          | ganic Chemical Analy                          | /sis 🔲 Ge                         | eneral Mineral                 |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                   |                                               |                                   |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                   |                                               |                                   |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                   |                                               |                                   |                                |
| For Office Use Only For C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | office Use Only For Office                                        | ce Use Only                       | For Office Use On                             | ly For Office U                   | lse Only                       |
| Fee: 320.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   | Record ID:                        |                                               |                                   | PE Number: 4555                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Employee:<br>TÎ V                                               | Received By:                      | joshua s                                      |                                   | Date: 11-30-21                 |
| Check One: New ☐ Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ☐ Reactivate                                                      | Changes (pleas                    |                                               | 5989                              |                                |

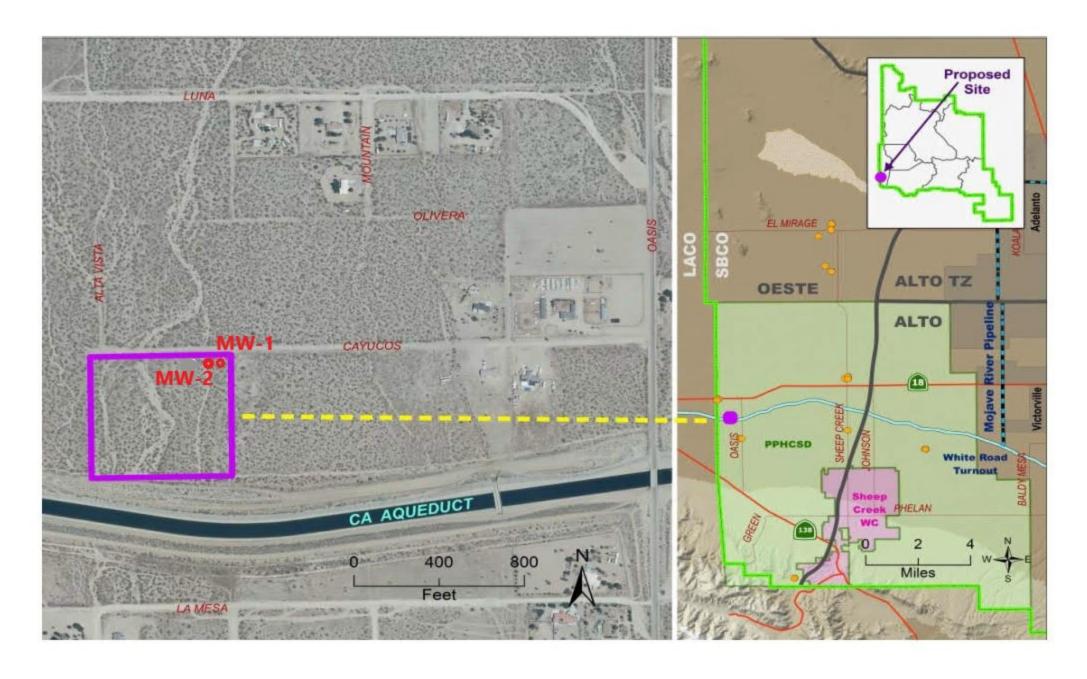



FIGURE 1. SITE LOCATION

### State of California

# Well Completion Report Form DWR 188 Submitted 4/4/2022 WCR2022-003845

| Owner's Well Num                      | ber Of    | RMWP           |                   | 1               | Date Work   | Began   | 12/20/2021     | ı            |          | Date W               | ork Ended      | 01/05/2022    |        |
|---------------------------------------|-----------|----------------|-------------------|-----------------|-------------|---------|----------------|--------------|----------|----------------------|----------------|---------------|--------|
| Local Permit Agend                    | cy San    | Bernardino Co  | unty D            | PH - Environm   | ental Healt | h Servi | ces Safe Drink | king V       | Vater I  | ——<br>Permit Sectior | ١              |               |        |
| Secondary Permit                      | Agency    | WP0037564      |                   |                 | Permit N    | Numbei  | 202112081      | 18           |          | F                    | ermit Date     | 11/30/2021    |        |
| Well Owner                            | (must     | remain coı     | nfide             | ntial pursi     | uant to     | Wate    | r Code 13      | 752          | )        | Planı                | ned Use        | and Activi    | ty     |
| Name MOJAVE                           | WATER     | AGENCY,        |                   |                 |             |         |                |              |          | Activity Ne          | w Well         |               |        |
| Mailing Address                       | 13846 (   | Conference Cer | nter Dr           |                 |             |         |                |              | -        | Planned Use          | Monitorir      | ng            |        |
| City Apple Valle                      | у         |                |                   |                 | State       | CA      | Zip 9230       | )7           | -  <br>- |                      |                |               |        |
|                                       |           |                |                   |                 | Well        | Loc     | ation          |              |          |                      |                |               |        |
| Address 535 C                         | ayucos R  | D              |                   |                 |             |         |                | ,            | APN      | 30990810             | 1              |               |        |
| City Pinon Hills                      | -         |                | Zip               | 92371           | County      | San     | Bernardino     |              | Towns    | ship 05 N            |                |               |        |
| Latitude 34                           | 29        | 16.0692        | N                 | Longitude       | -<br>-117   | 39      | 0.7596 \       | <del>_</del> | Range    | e 07 W               |                |               |        |
| Deg.                                  | <br>Min.  |                | -                 | _               | Deg.        | Min.    | Sec.           |              | Section  |                      |                |               |        |
| Dec. Lat. 34.487                      |           | <b>O</b> CO.   |                   | Dec. Long.      | -117.6502   |         | <b>O</b> CO.   |              |          | ne Meridian          | San Berna      | rdino         |        |
|                                       | 131       |                | 11                |                 |             |         |                |              |          | d Surface Ele        | vation         |               |        |
| Vertical Datum                        |           |                |                   | orizontal Datur |             | 4       |                |              |          | ion Accuracy         | Can Made ad    |               |        |
| Location Accuracy                     | / Unkr    |                | _ocatio<br>Method | n Determinatio  | n GPS       |         |                |              | Elevat   | ion Determina        | ition ivietnod | -             |        |
|                                       | Во        | rehole Info    | rmat              | ion             |             |         | Wate           | er L         | evel     | and Yield            | d of Com       | pleted We     | ·II    |
| Orientation Vert                      | tical     |                |                   | Speci           | fy          |         | Depth to first | water        |          |                      | (Feet be       | elow surface) |        |
| Drilling Method                       | Sonic     |                | Drilling          | Fluid None      |             | -       | Depth to Stati | ic           |          |                      | _              |               |        |
|                                       |           |                | 3                 |                 |             |         | Water Level    |              |          | (Feet)               | Date Mea       | asured        |        |
| Total Depth of Bor                    | ring 40   | 0              |                   | Feet            |             |         | Estimated Yie  | eld*         |          | (GPM)                | Test Type      |               |        |
| Total Depth of Cor                    | mpleted W | /ell 290.6     |                   | ——<br>Feet      |             |         | Test Length    | <del></del>  |          | (Hours               | ,              |               | (feet) |
| <u> </u>                              | •         |                |                   |                 |             | L       | *May not be re | epres        | entativ  | ve of a well's i     | ong term yie   | ela.          |        |
|                                       |           |                |                   | Ge              | ologic l    | Log -   | Free Form      | n            |          |                      |                |               |        |
| Depth from<br>Surface<br>Feet to Feet |           |                |                   |                 |             |         | Description    |              |          |                      |                |               |        |

400

See attached Lithologic Logs

|             | Casings                                   |       |                                             |     |                                         |                                                |       |                                 |             |  |  |  |
|-------------|-------------------------------------------|-------|---------------------------------------------|-----|-----------------------------------------|------------------------------------------------|-------|---------------------------------|-------------|--|--|--|
| Casing<br># | Depth from Surface<br>Feet to Feet Casing |       | Casing Type Material Casings Specifications |     | Wall<br>Thickness<br>(inches)           | Outside<br>Diameter<br>(inches) Screen<br>Type |       | Slot Size<br>if any<br>(inches) | Description |  |  |  |
| 1           | 0                                         | 270.6 | Blank                                       | PVC | OD: 2.375 in.  <br>Thickness: 0.218 in. | 0.218                                          | 2.375 |                                 |             |  |  |  |
| 1           | 270.6                                     | 290.6 | Screen                                      | PVC | OD: 2.375 in.  <br>Thickness: 0.218 in. | 0.218                                          | 2.375 | Milled<br>Slots                 | 0.02        |  |  |  |

|                                       | Annular Material |             |                             |                  |                    |  |  |  |  |  |  |
|---------------------------------------|------------------|-------------|-----------------------------|------------------|--------------------|--|--|--|--|--|--|
| Depth from<br>Surface<br>Feet to Feet |                  | Fill        | Fill Type Details           | Filter Pack Size | Description        |  |  |  |  |  |  |
| 0                                     | 2                | Other Fill  | See description.            |                  | Concrete Ready Mix |  |  |  |  |  |  |
| 2                                     | 21               | Cement      | Portland Cement/Neat Cement |                  |                    |  |  |  |  |  |  |
| 21                                    | 269              | Other Fill  | See description.            |                  | Sand/Bentonite mix |  |  |  |  |  |  |
| 269                                   | 291              | Filter Pack | 8 x 20                      |                  |                    |  |  |  |  |  |  |
| 291                                   | 400              | Other Fill  | See description.            |                  | Sand/Bentonite mix |  |  |  |  |  |  |

### Other Observations:

|                          | Borehole Specifications |                            |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------|----------------------------|--|--|--|--|--|--|--|--|
| Depth<br>Surf<br>Feet to | ace                     | Borehole Diameter (inches) |  |  |  |  |  |  |  |  |
| 0                        | 100                     | 10.5                       |  |  |  |  |  |  |  |  |
| 100                      | 320                     | 8                          |  |  |  |  |  |  |  |  |
| 320                      | 375                     | 6                          |  |  |  |  |  |  |  |  |
| 375                      | 400                     | 4                          |  |  |  |  |  |  |  |  |

| Certification Statement                                                                                      |                                                                    |             |       |                      |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|-------|----------------------|--|--|--|--|--|--|
| I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief |                                                                    |             |       |                      |  |  |  |  |  |  |
| Name                                                                                                         | e A B C LIOVIN DRILLING INC                                        |             |       |                      |  |  |  |  |  |  |
| Person, Firm or Corporation                                                                                  |                                                                    |             |       |                      |  |  |  |  |  |  |
| 11                                                                                                           | 80 E BURNETT STREET                                                | SIGNAL HILL | CA    | 90755                |  |  |  |  |  |  |
|                                                                                                              | Address                                                            | City        | State | Zip                  |  |  |  |  |  |  |
| Signed                                                                                                       | electronic signature received  C-57 Licensed Water Well Contractor |             |       | 22904<br>ense Number |  |  |  |  |  |  |

| Attachments                                                                 |
|-----------------------------------------------------------------------------|
| MWA_MW-OESTE-P Lith Log (1)_Redacted.pdf - Location Map - Redacted          |
| OESTE-P Well Diagram 01.pdf - Well Construction Diagram                     |
| MWA_MW-OESTE-P Lith Log.pdf - Geologic Log                                  |
| OESTE-P Well Diagram 01_Redacted.pdf - Well Construction Diagram – Redacted |
| OESTE-P Site Map.pdf - Location Map                                         |
| OESTE-P Site Map_Redacted.pdf - Geophysical Log – Redacted                  |

| DWR Use Only |                             |          |   |   |  |                   |     |      |    |     |      |     |   |
|--------------|-----------------------------|----------|---|---|--|-------------------|-----|------|----|-----|------|-----|---|
| CSG#         | State Well Number Site Code |          |   |   |  | Local Well Number |     |      |    |     |      |     |   |
|              | 05N07W30                    |          |   |   |  |                   |     |      |    |     |      |     |   |
|              |                             |          | 1 | N |  |                   |     |      |    |     |      |     | w |
| La           | titude De                   | g/Min/Se | С |   |  | I                 | Lon | gitu | de | Deg | Mir/ | /Se | C |
| TRS:         | 05N07V                      | V30Q002  | S |   |  |                   |     |      |    |     |      |     |   |
| APN:         | 309908                      | 101      |   |   |  |                   |     |      |    |     |      |     |   |

### **MONITOR WELL OESTE-P** DRAFT PROJECT: MWA-OESTE PROJECT NUMBER: 1311.01 DATES DRILLED: 12/20/2021-1/03/2022 DATE COMPLETED: 1/5/2022 DRILLING COMPANY: ABC Liovin DRILLING METHOD: Sonic LOCATION: Oeste Area-Cayucos St. 10.0"-8.0" at 100'. Legend: LOGGED BY: G. Cranham PG# 5897 BOREHOLE DIA.: 8.0"-6.0" at 320' 6.0"-4.0" at 375' Moderate No Reaction REVIEWED BY: S. Prazen PG# 9816 LAND SURFACE ELEV: TBD Very Weak Strong Lab Grab Weak SAMPLING METHOD: Continous TOTAL DEPTH OF BORING: 400 feet bls Sample WELL CONSTRUCTION RECOVERY/ LAB SAMPLE GRAPHIC DEPTH Reaction LITHOLOGIC DESCRIPTION DIAGRAM (feet) LOG USC OF MATERIAL -Above Ground Monument Vaul 0 Utility clearance backfill **Neat Cement** Grout with 5% Bentonite [0-21'] 2-inch Sch-80 PVC [0-271']5 SAND WITH SILT (10/80/10) Light olive brown (2.5Y 5/4), dry to slightly moist, fine- to coarse-grained, poorly sorted / well graded, angular to subangular; trace fine gravel; grains predominantly granitic. 10 SW-SM Stainless Steel Centralizer SAND WITH SILT AND GRAVEL (20/70/10) Otherwise as above; gravel fraction increases with depth; few cobbles to 5" length. 15 SILTY SAND (0/80/20) Brown (10YR 4/3), dry to SM slightly moist, fine-grained, trace medium to coarse, well sorted / poorly graded, angular to subangular. SAND WITH SILT AND GRAVEL Same as 13-15 ft. SW-SM SILTY SAND Same as 15-16 ft; weak HCl reaction at ~19 ft. SM

| MONITOR WE                                          | ELL C          | ESTE-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | ECT: MWA-OES                            |                                               |
|-----------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------|
| DATES DRILLED :12/20                                | 0/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJ                                                  | ECT NUMBER: 1:                          | 311.01                                        |
| DRILLING COMPANY:                                   | ABC Lio        | oin DRILLING METHOD: Sonic 10.0"-8.0" at 100',                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCA                                                  | ΓΙΟΝ: Oeste Area                        | -Cayucos St.                                  |
| LOGGED BY: G. Cranh                                 | am PG# :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | Legend:                                 | Moderate                                      |
| REVIEWED BY: S. Praz                                | zen PG#        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | /ery Weak                               | Strong                                        |
| SAMPLING METHOD:                                    | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                     | Veak 🛊                                  | Lab Grab<br>Sample                            |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE USCS | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | WELL CONSTR<br>DIAGRA                   |                                               |
| 20 SM SM 25 SW-SM ML 30 SP-SM                       |                | SAND WITH SILT (5/85/10) Brown (10YR 4/3), fine- to coarse-grained, poorly sorted / well grad angular to subangular; trace fine gravel.  SANDY SILT (5/40/55) Dark yellowish brown (7/4/4), slightly moist, nonplastic; sand fine-grained trace medium; trace gravel to 3" length.  SAND WITH SILT (0/90/10) Olive brown (2.5Y dry, fine-grained, trace medium to coarse, well s/poorly graded, angular to subangular; locally tr fine gravel (<5%).  SAND WITH SILT (10/80/10) Trace fine gravel, otherwise same as above. | dry,<br>led,<br>10YR<br>d,<br>4/4),<br>sorted<br>race | 21-                                     | Medium Bentonite Chips With #3 Sand [21-269'] |
| 35 — SM  SM  SM  40                                 |                | SILTY SAND WITH GRAVEL (15/65/20) Olive (2.5Y 4/3), dry, fine- to coarse-grained, poorly s well graded, angular to subangular; gravel to 1" length, angular to subangular, granitic; increase fraction at 37-38 ft; increased gravel fraction at 3ft; weak HCl reaction at 34-35 ft and 37-38 ft.                                                                                                                                                                                                                           | orted /<br>ed silt                                    | KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX       |

|                 | VIT             | OR                      | WE        | ELL C          | ESTE-P                                                                                                                                                                                     |                    | ECT: MWA-OESTE                          |
|-----------------|-----------------|-------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|
| DATES           | DRIL            | LED                     | :12/20    | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                           | PROJ               | ECT NUMBER: 1311.01                     |
| DRILLI          | NG C            | OMPA                    | ANY: A    | ABC Lio        |                                                                                                                                                                                            | LOCAT              | FION: Oeste Area-Cayucos St.            |
| LOGGI           | ED BY           | /: <i>G.</i> C          | Cranha    | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                          |                    | Legend:  No Reaction Moderate           |
| REVIE           | WED             | BY: <i>S</i>            | . Praz    | en PG#         |                                                                                                                                                                                            |                    | /ery Weak Strong                        |
| SAMPL           | ING I           |                         | IOD: (    | Continou       | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                        | V                  | Veak Lab Grab Sample                    |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                      |                    | WELL CONSTRUCTION<br>DIAGRAM            |
| 40              |                 |                         | SM        |                | SILTY SAND WITH GRAVEL (15/65/20) Olive b<br>(2.5Y 4/3)                                                                                                                                    | rown               |                                         |
| _               |                 |                         | SP-<br>SM |                | SAND WITH SILT (0/90/10) Brown (10YR 4/3), fine- to medium-grained, predominantly fine, tra coarse, moderately sorted/graded, angular to subangular; increased medium sand fraction at ft. | ce                 |                                         |
| 45 —            |                 |                         | SM        |                | SILTY SAND (10/60/30) Olive brown (2.5Y 4/3) fine gravel, otherwise same as above; weak HC reaction.                                                                                       |                    |                                         |
| -               |                 |                         | SP-<br>SM |                | SAND WITH SILT (15/75/10) Trace gravel to 33 length, otherwise same as 41.5-44 ft.                                                                                                         | /2"                |                                         |
|                 |                 |                         | SP-<br>SM |                | SAND WITH SILT (15/75/10) Trace gravel to 3½" length, otherwise same as 41.5-44 ft.                                                                                                        |                    |                                         |
| _               |                 |                         | SM        |                | SILTY SAND (5/65/30) No HCI reaction, otherw same as 44-45 ft.                                                                                                                             | vise               |                                         |
| 50 —            |                 |                         | SP-<br>SM |                | SAND WITH SILT (10/80/10) Same as 41.5-44 trace gravel to 2" length; minor color variation, be texture generally consistent.  SILTY SAND (5/70/25) Olive brown (2.5Y 4/3)                  | out                | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| _<br>_<br>60    |                 |                         | SM        |                | yellowish brown (10YR 4/4), dry to slightly mois to medium-grained, predominantly fine, trace comoderately sorted/graded, angular to subangula locally trace gravel to 1" length.          | t, fine-<br>barse, | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  |

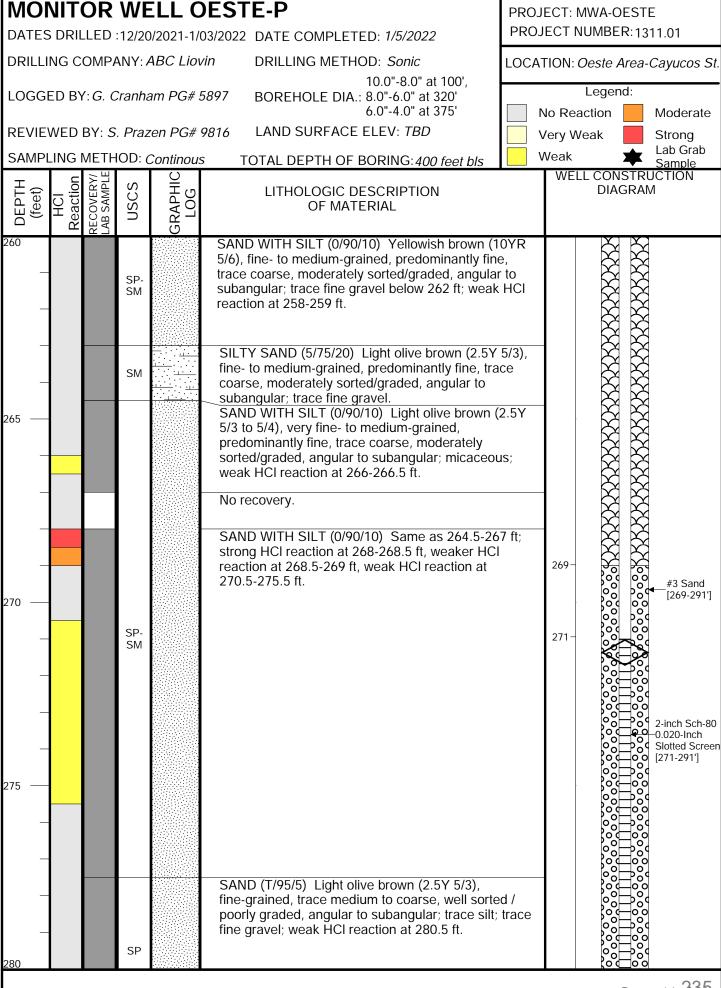
| MONITOR WI                                                    | ELL C          | DESTE-P                                                                                                                                                                                                          |       | ECT: MWA-OEST         |                                         |
|---------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|-----------------------------------------|
| DATES DRILLED :12/2                                           | 0/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                 | PROJ  | ECT NUMBER: 13        | 311.01                                  |
| DRILLING COMPANY:                                             | ABC Lio        | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                                | LOCAT | ΓΙΟΝ: Oeste Area      | -Cayucos St.                            |
| LOGGED BY: G. Cranh                                           | am PG# :       |                                                                                                                                                                                                                  |       | Legend:  lo Reaction  | Moderate                                |
| REVIEWED BY: S. Pra                                           | zen PG#        | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                      |       | /ery Weak             | Strong                                  |
| SAMPLING METHOD:                                              |                | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                              | V     | Veak *                | Lab Grab<br>Sample                      |
| DEPTH<br>(feet)<br>HCI<br>Reaction<br>RECOVERY/<br>LAB SAMPLE | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                            |       | WELL CONSTR<br>DIAGRA |                                         |
| 60 SM                                                         |                | SILTY SAND (5/70/25) Olive brown (2.5Y 4/3) to dark yellowish brown (10YR 4/4)  SILTY SAND Same as above; to SAND WITH SILT, fine-grained, trace medium to coarse, otherwise same as 41.5-44 ft; probably highly |       | XXXXXXX               | KKKKK                                   |
|                                                               |                | disturbed due to difficulty recovering core intervi                                                                                                                                                              | al.   |                       | KKKKKKKKKK                              |
| SM                                                            |                | SILTY SAND (0/85/15) Brown (10YR 4/3), dry t<br>slightly moist, fine- to very fine-grained, trace me<br>to coarse, well sorted / poorly graded, angular to<br>subangular.                                        | edium |                       | KKKKKK                                  |
| 70 — SP                                                       |                | SAND (0/95/5) Olive brown (2.5Y 4/3), dry, fine-grained, trace medium, well sorted / poorly graded, angular to subangular; trace silt.                                                                           |       |                       | * KKKKK                                 |
|                                                               |                | SAND WITH SILT (0/90/10) Dark yellowish bro (10YR 4/4), dry to slightly moist, trace coarse sa otherwise same as above.                                                                                          |       |                       | KKKKKKK                                 |
| 75 —                                                          |                | No recovery.                                                                                                                                                                                                     |       |                       | KKKKKK                                  |
| SP-<br>SM                                                     |                | SAND WITH SILT Same as 71.5-76 ft; lower contact gradational.                                                                                                                                                    |       |                       | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |

| MOI                           | VIT             | OR                      | WE        | ELL C          | DESTE-P                                                                                                                                                                                                                                                                                                      |                         | ECT: MWA-OEST         |                                         |  |
|-------------------------------|-----------------|-------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-----------------------------------------|--|
| DATES                         | DRIL            | LED                     | :12/20    | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                             | PROJECT NUMBER: 1311.01 |                       |                                         |  |
| DRILLI                        | NG C            | OMPA                    | ANY: A    | ABC Lio        | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                                                                                                                            | LOCAT                   | ΓΙΟΝ: Oeste Area      | -Cayucos St.                            |  |
| LOGG                          | ED BY           | /: G. C                 | Cranha    | am PG#         |                                                                                                                                                                                                                                                                                                              |                         | Legend:  No Reaction  | Moderate                                |  |
| REVIE'                        | WED             | BY: <i>S</i>            | . Praz    | en PG#         | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                                                  |                         | /ery Weak             | Strong                                  |  |
| SAMPI                         | _ING I          |                         | IOD: (    | Continou       | S TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                        | V                       | Veak 🛊                | Lab Grab<br>Sample                      |  |
| DEPTH<br>(feet)               | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                        |                         | WELL CONSTR<br>DIAGRA |                                         |  |
| 80                            |                 |                         | SP-<br>SM |                | SAND WITH SILT Same as 71.5-76 ft; lower contact gradational.                                                                                                                                                                                                                                                |                         |                       | X<br>X                                  |  |
| _                             |                 |                         | SP        |                | SAND (0/95/5) Brown (10YR 4/3), fine- to medium-grained, predominantly fine, trace coars moderately sorted/graded, angular to subangula trace silt.                                                                                                                                                          |                         |                       | X X X X X X X X X X X X X X X X X X X   |  |
| 85 —                          |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Olive brown (2.5Y fine- to medium-grained, predominantly fine, tra coarse, moderately sorted/graded, angular to subangular; trace gravel to 1" length.                                                                                                                              |                         |                       |                                         |  |
| _                             |                 |                         | SM        | - : 4          | SILTY SAND (0/75/25) Very dark grayish browi                                                                                                                                                                                                                                                                 | n                       |                       | 3                                       |  |
| 90 —                          |                 |                         | SP-<br>SM |                | (2.5Y 3/2), otherwise same as above.  SAND WITH SILT (5/85/10) Brown (10YR 4/3) olive brown (2.5Y 4/3), fine- to medium-grained, predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace grave 2" length, subangular to subrounded, >8" cobble ft; HCI reaction at 92.5 ft. | vel to                  |                       | X K K K K K K K K K K K K K K K K K K K |  |
| 95 —<br>—<br>—<br>—<br>—<br>— |                 |                         | SM        |                | SILTY SAND (5/70/25) Light olive brown (2.5Y fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangula trace fine gravel, increased gravel fraction to ~1 96-97 ft; weak HCI reaction at 99 ft.                                                                            | ar;                     |                       | KKKKKKKKKKKK                            |  |

|                         | VIT             | OR                      | WE        | ELL C          | DESTE-P                                                                                                                                                                                                                                        |                         | IECT: MWA-OEST                          |                    |  |
|-------------------------|-----------------|-------------------------|-----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------------|--|
| DATES                   | DRIL            | LED                     | :12/20    | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                               | PROJECT NUMBER: 1311.01 |                                         |                    |  |
| DRILLI                  | NG C            | OMPA                    | ANY: A    | ABC Lio        |                                                                                                                                                                                                                                                | LOCA                    | TION: Oeste Area                        | -Cayucos St.       |  |
| LOGGE                   | ED BY           | ': G. C                 | Cranha    | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                              |                         | Legend:                                 | D.4l t -           |  |
| REVIE\                  | WED             | BY: <i>S</i>            | . Praz    | en PG#         |                                                                                                                                                                                                                                                |                         | No Reaction  Very Weak                  | Moderate<br>Strong |  |
| SAMPL                   | ING I           |                         | IOD: (    | Continou       | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                            | \                       | Weak 🛊                                  | Lab Grab<br>Sample |  |
| DEPTH<br>(feet)         | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                          |                         | WELL CONSTR<br>DIAGRA                   |                    |  |
| 100                     |                 |                         | ML        |                | SANDY SILT (0/30/70) Yellowish brown (10YR                                                                                                                                                                                                     |                         | K X                                     |                    |  |
| _                       |                 |                         | SM        |                | slightly moist, low to medium plasticity; sand fine medium-grained, trace coarse; lower contact gradational.  SILTY SAND (5/70/25) Same as 94.5-100 ft; we HCI reaction at 101 ft; lower contact gradational                                   | eak                     | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  |                    |  |
| <br>105                 |                 |                         | SP        |                | SAND (10/85/5) Dark grayish brown (2.5Y 4/2), fine- to medium-grained, trace coarse, moderate sorted/graded, angular to subangular; trace silt; gravel to 1" length; weak HCl reaction at 105 ft a 106 ft.                                     | ely<br>trace            | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  |                    |  |
| _                       |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Otherwise same as above; weak HCI reaction.                                                                                                                                                                           | S                       |                                         |                    |  |
| _                       |                 |                         | SP        |                | SAND (10/85/5) Same as 103-106 ft.                                                                                                                                                                                                             | г ф                     |                                         |                    |  |
| _<br>110 —              |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Same as 106-107.                                                                                                                                                                                                      | 5 II.                   |                                         |                    |  |
| _                       |                 |                         | SP        |                | SAND (10/85/5) Same as 103-106 ft; weak HCl reaction; probably highly disturbed due to difficu recovering core interval.                                                                                                                       |                         |                                         |                    |  |
| _<br>115 —              |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Fine- to coarse-graph predominantly medium, otherwise same as 106-ft; with thin silty interbed(s) at 114 ft; probably his disturbed due to difficulty recovering core interval.                                       | -107.5<br>ighly         |                                         |                    |  |
| -<br>-<br>-<br>-<br>120 |                 |                         | SM        |                | SILTY SAND (5/80/15) Dark grayish brown (2.5 4/2), fine- to coarse-grained, predominantly fine moderately sorted/graded, angular to subangula trace fine gravel, locally to 1½" length; HCl react 115-116 ft; weak HCl reaction at 116-120 ft. | oY<br>ar;               | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| ı∠U                     |                 |                         |           |                |                                                                                                                                                                                                                                                |                         |                                         | `                  |  |

|                 |                 |                         |           |                |                                                                                                                                                                                                               |            | PROJECT: MWA-OESTE                     |                    |  |
|-----------------|-----------------|-------------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|--------------------|--|
| DATES           | DRIL            | LED                     | :12/20    | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                              | PRO.       | PROJECT NUMBER: 1311.01                |                    |  |
| DRILLI          | NG C            | OMPA                    | ANY: A    | ABC Lio        |                                                                                                                                                                                                               | LOCA       | TION: Oeste Area                       | -Cayucos St.       |  |
| LOGGI           | ED BY           | ': G. C                 | Cranha    | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                             |            | Legend:                                | Moderate           |  |
| REVIE           | WED             | BY: <i>S</i>            | . Praz    | en PG#         |                                                                                                                                                                                                               |            | Very Weak                              | Strong             |  |
| SAMPL           | ING I           |                         | IOD: (    | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                           | \          | Weak 🛊                                 | Lab Grab<br>Sample |  |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                         |            | WELL CONSTR<br>DIAGRA                  |                    |  |
| 120<br>         |                 | *                       | ML        |                | SILT WITH SAND (0/15/85) Brown (10YR 5/3), slightly moist, low plasticity; sand fine- to medium-grained.                                                                                                      |            | XX X                                   |                    |  |
| _               |                 |                         | SM        |                | SILTY SAND (0/70/30) Brown (10YR 5/3), dry, to medium-grained, predominantly fine, modera sorted/graded, angular to subangular.                                                                               |            |                                        |                    |  |
|                 |                 |                         | SP-<br>SM |                | SAND WITH SILT (0/90/10) Fine- to coarse-grapredominantly fine, otherwise same as above.                                                                                                                      | ained,     |                                        |                    |  |
| 125 —           |                 |                         | ML        |                | SANDY SILT (0/40/60) Brown (10YR 4/3), low plasticity; sand fine-grained, trace medium.                                                                                                                       |            |                                        |                    |  |
|                 |                 |                         | SM        |                | SILTY SAND (5/65/30) Brown (10YR 4/3) to da grayish brown (2.5Y 4/2), fine- to coarse-grained poorly sorted / well graded, angular to subangul trace gravel to 1½" length; weak HCl reaction at 126-127.5 ft. | d,<br>lar; | XXXXXX XXXXX XXXXX XXXXXX XXXXXXXXXXXX |                    |  |
| _               |                 |                         | ML        |                | SANDY SILT (0/40/60) Same as 124-126 ft.                                                                                                                                                                      |            |                                        |                    |  |
| 130 —           |                 |                         | SM        |                | SILTY SAND (0/80/20 to 0/60/40) Fine- to medium-grained, trace coarse, moderately sorted/graded, otherwise same as 126-128 ft; w HCI reaction at 130.5-131 ft.                                                | reak       |                                        |                    |  |
|                 |                 |                         | SP        |                | SAND (0/95/5) Dark grayish brown (2.5Y 4/2), medium-grained, predominantly fine, well sorted poorly graded, angular to subangular; trace silt.                                                                |            |                                        |                    |  |
| _               |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Olive brown (2.5Y fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangula trace fine gravel; weak HCl reaction at 132.5 ft a 133.5 ft.           | ar;        | XXXXXX                                 |                    |  |
| 135 —           |                 |                         | SP        |                | SAND (0/95/5) Same as 131-132 ft; generally coarsens downward.                                                                                                                                                |            |                                        |                    |  |
| _               |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Same as 132-134 weak HCl reaction at 136-137 ft.                                                                                                                                     |            |                                        |                    |  |
|                 |                 |                         | SM        |                | SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), to very fine-grained, locally trace medium, well see / poorly graded, angular; micaceous.                                                                        |            | KKKKKKKK                               |                    |  |

| MONITOR WE                                          | LL OES                                        | STE-P                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | ECT: MWA-OEST                          |                    |  |
|-----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------|--|
| DATES DRILLED :12/20/                               | /2021-1/03/20                                 | 022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                    | PROJECT NUMBER: 1311.01                       |                                        |                    |  |
| DRILLING COMPANY: A                                 | BC Liovin                                     | DRILLING METHOD: Sonic                                                                                                                                                                                                                                                                                                                                                                                                                          | LOCAT                                         | ΓΙΟΝ: Oeste Area-                      | Cayucos St.        |  |
| LOGGED BY: G. Cranhai                               | m PG# 5897                                    | 10.0"-8.0" at 100',<br>BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                    |                                               | Legend:                                | Moderate           |  |
| REVIEWED BY: S. Praze                               | en PG# 9816                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | Very Weak                              | Strong             |  |
| SAMPLING METHOD: C                                  | ontinous                                      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                             | V                                             | Veak 🛊                                 | Lab Grab<br>Sample |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE USCS | GRAPHIC<br>LOG                                | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | WELL CONSTR<br>DIAGRA                  |                    |  |
| 140 ML                                              |                                               | ANDY SILT (0/40/60) Olive brown (2.5Y 4/3), onplastic; sand fine- to very fine-grained, trace                                                                                                                                                                                                                                                                                                                                                   | <b>!</b>                                      | XX                                     |                    |  |
| - SP-<br>SM/<br>SP                                  | S<br>G<br>p                                   | nedium; weak HCl reaction at 140.5-141 ft.  AND (5/90/5) to SAND WITH SILT (5/85/10)  Grayish brown (2.5Y 5/2), fine- to coarse-graine redominantly fine, moderately sorted/graded, as subangular; trace fine gravel; weak HCl react 41-141.5 ft; carbonate fragment at 143 ft.                                                                                                                                                                 | ed,<br>angular                                | KKKKKKKKKK<br>KKKKKKKKKKKK             |                    |  |
| 145 — SW                                            |                                               | AND WITH GRAVEL (25/70/5) Grayish brown /2), fine- to coarse-grained, poorly sorted / well                                                                                                                                                                                                                                                                                                                                                      |                                               |                                        |                    |  |
|                                                     | tr<br>S<br>G<br>Ic<br>s<br>s<br>s<br>le<br>ir | raded, angular to subangular; gravel to 2½" lereace silt.  AND (10/85/5) to SAND WITH SILT (5/85/10) Grayish brown (2.5Y 5/2), fine- to coarse-graine ocally predominantly fine, poorly to moderately orted / well to moderately graded, angular to ubangular; trace fine gravel, locally to 1½" ength, increased gravel fraction at 148.5-149 ft; acreased silt fraction at 151.5-152.5 ft; weak Hoeaction at 150-150.5 ft and 151.5-152.5 ft. | ed,                                           | XXXXXXXXXXXX                           |                    |  |
| SW/<br>SP-<br>SM                                    | G<br>lo<br>sc<br>st<br>le<br>in<br>re         | AND (10/85/5) to SAND WITH SILT (5/85/10) rayish brown (2.5Y 5/2), fine- to coarse-grained, cally predominantly fine, poorly to moderately orted / well to moderately graded, angular to abangular; trace fine gravel, locally to 1½" ngth, increased gravel fraction at 148.5-149 ft; creased silt fraction at 151.5-152.5 ft; weak HCl eaction at 150-150.5 ft and 151.5-152.5 ft.                                                            | E/2\                                          | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| SM                                                  | fii<br>p<br>co<br>H<br>S                      | ne- to very fine-grained, trace medium, well so oorly graded, angular; fine- to medium-grained oarse, moderately sorted/graded below 156 ft; ICI reaction at 156-157 ft.  AND (10/85/5) to SAND WITH SILT (5/85/10) o medium-grained, predominantly fine, trace co                                                                                                                                                                              | rted /<br>l, trace<br>weak<br>Fine-<br>parse, | XXXXXXXX<br>XXXXXXXX                   |                    |  |
| - SM :                                              | in<br>in                                      | noderately sorted/graded, otherwise same as a acreased silt fraction at 161.5-163 ft and 164.5-acreased gravel fraction at 157.5-158 ft and 16 ravel to 1½" length; possible schist clasts at 15                                                                                                                                                                                                                                                | -165 ft;<br>1 ft,                             |                                        |                    |  |


| MOI                       | NIT             | OR                      | WE               | ELL C          | ESTE-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ECT: MWA-OES                            |                    |  |
|---------------------------|-----------------|-------------------------|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------------|--|
| DATES                     | S DRIL          | LED                     | :12/20           | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT NUMBER: 1311.01 |                                         |                    |  |
| DRILLI                    | NG C            | OMPA                    | ANY: A           | ABC Lio        | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCA                    | TION: Oeste Area                        | -Cayucos St.       |  |
| LOGG                      | ED BY           | ': G. C                 | Cranha           | am PG# :       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Legend: No Reaction                     | Moderate           |  |
| REVIE                     | WED             | BY: <i>S</i>            | . Praz           | en PG#         | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | /ery Weak                               | Strong             |  |
| SAMPI                     | LING I          |                         | IOD: (           | Continou       | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                       | Weak 🛊                                  | Lab Grab<br>Sample |  |
| DEPTH<br>(feet)           | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS             | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | WELL CONSTR<br>DIAGRA                   |                    |  |
| 160 — — 165 — —           |                 |                         | SP/<br>SP-<br>SM |                | and 164.5 ft; weak HCl reaction at 161.5-163 ft 164.5-165 ft; strong HCl reaction associated wit (1"-2" thick) caliche layer at 166.5 ft.  SANDY SILT (0/45/55) Grayish brown (2.5Y 5/2) papellatics could fine to you fine grained miss.                                                                                                                                                                                                                                                                                                                     | th thin                 | KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |                    |  |
| _                         |                 |                         | ML<br>SM         |                | nonplastic; sand fine- to very fine-grained, mica  SILTY SAND (0/80/20) Yellowish brown (10YR fine- to very fine-grained, well sorted / poorly grained.                                                                                                                                                                                                                                                                                                                                                                                                       | 5/4),                   | KXXXX XXXXX XXXXXX XXXXXXXXXXXXXXXXXXX  |                    |  |
| 170 —  175 —  -  175 —  - |                 |                         | SP/<br>SP-<br>SM |                | angular; lower contact gradational.  SAND (10/85/5) to SAND WITH SILT (5/85/10)  Brown (10YR 5/3) to grayish brown (2.5Y 5/2), otherwise same as 157-166.5 ft; locally fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel to 2" length, increased gravel fraction at 170-173 ft, 178-180 ft, 183.5-185 ft and 186-18 ft, gravel predominantly granitic and gneiss; interbed of silty sand (0/80/20), ~3" thick, between 180.5 and 181 ft, fine-grained; weak H reaction at 183-183.5 ft and 185.5 ft. | 7                       | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK  |                    |  |
| 180                       |                 |                         |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | oxdot                                   | 3                  |  |

| MONIT                              | OR WE                           | ELL O          | PROJECT: MWA-OESTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                         |                    |
|------------------------------------|---------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|--------------------|
| DATES DRIL                         | LED :12/20                      | 0/2021-1/0     | 3/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PROJ                         | ECT NUMBER: 13                          | 11.01              |
| DRILLING C                         | OMPANY:                         | ABC Liovi      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCAT                        | ΓΙΟΝ: Oeste Area-                       | Cayucos St.        |
| LOGGED BY                          | ∕:G. Cranha                     | am PG# 58      | 10.0"-8.0" at 100',<br>897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Legend:                                 | Moderate           |
| REVIEWED                           | BY: <i>S. Praz</i>              | zen PG# 9      | 816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                            | /ery Weak                               | Strong             |
| SAMPLING                           |                                 |                | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                            | Veak 🛊                                  | Lab Grab<br>Sample |
| DEPTH<br>(feet)<br>HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE<br>USCS | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | WELL CONSTRI<br>DIAGRAI                 |                    |
| 185 —                              |                                 |                | SAND (10/85/5) to SAND WITH SILT (5/85/10) Brown (10YR 5/3) to grayish brown (2.5Y 5/2), otherwise same as 157-166.5 ft; locally fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace gravel to 2" length, increased gravel fraction at 170-173 ft, 178-180 ft, 183.5-185 ft and 186-187 ft, gravel predominantly granitic and gneiss; interbed of silty sand (0/80/20), ~3" thick, between 180.5 and 181 ft, fine-grained; weak HCI reaction at 183-183.5 ft and 185.5 ft. |                              | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |                    |
| -<br>190 —<br>-                    | SM<br>SP/<br>SP-<br>SM          |                | SILTY SAND (0/80/20) Brown (10YR 5/3), fine-medium-grained, predominantly fine, trace coard moderately sorted/graded, angular to subangula SAND (10/85/5) to SAND WITH SILT (5/85/10) as 169-188 ft.                                                                                                                                                                                                                                                                                                                       | se,<br>ar.                   |                                         |                    |
| 195 —                              | SM<br>SW-<br>SM                 |                | SILTY SAND (0/70/30) Olive brown (2.5Y 4/3), to coarse-grained, poorly sorted / well graded, a to subangular; weak HCl reaction; lower contact gradational; probably highly disturbed due to diffrecovering core interval.  SAND WITH SILT (5/85/10) Dark grayish brown (2.5Y 4/2), otherwise same as above; trace fine gravel; very weak HCl reaction; probably highly disturbed due to difficulty recovering core interval.                                                                                              | ingular<br>t<br>ficulty<br>n | KKKKKKKKKK                              |                    |
| -                                  | SW                              |                | SAND (5/90/5) Brown (10YR 5/3), dry, fine- to coarse-grained, poorly sorted / well graded, ang subangular; trace silt; trace fine gravel to 1" leng SILTY SAND (0/85/15) Yellowish brown (10YR fine- to medium-grained, predominantly fine, moderately sorted/graded, angular to subangula weak HCl reaction at 198.5-199.5 ft.                                                                                                                                                                                            | gth.<br>5/4),                |                                         |                    |
| 200                                |                                 |                | SAND (5/90/5) to SAND WITH SILT (5/85/10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ine- to                      |                                         |                    |

| MONIT                              | OR WI                           | ELL C          | DESTE-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROJ                         | ECT: MWA-OESTE                          |  |  |
|------------------------------------|---------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|--|--|
| DATES DRII                         | LLED :12/2                      | 0/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROJECT NUMBER: 1311.01      |                                         |  |  |
| DRILLING C                         | OMPANY:                         | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOCAT                        | ΓΙΟΝ: Oeste Area-Cayucos St.            |  |  |
| LOGGED B                           | Y:G. Cranh                      | am PG#         | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | Legend:  No Reaction Moderate           |  |  |
| REVIEWED                           | BY: S. Pra.                     | zen PG#        | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | /ery Weak Strong                        |  |  |
| SAMPLING                           |                                 | Continou       | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                            | Veak Lab Grab Sample                    |  |  |
| DEPTH<br>(feet)<br>HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE<br>USCS | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | WELL CONSTRUCTION<br>DIAGRAM            |  |  |
| 200 —                              | SP/<br>SP-<br>SM                |                | medium-grained, predominantly fine, moderatel sorted/graded, locally fine- to coarse-grained, predominantly fine, moderatel sorted/graded, locally fine- to coarse-grained, predominantly fine, moderatel sorted/graded, predominantly fine, moderatel sorted/graded, predominantly fine, moderatel sorted, predominantly fine, moderatel sorted, predominantly fine, predominantl | oorly                        | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |  |  |
|                                    | SW                              |                | SAND WITH SILT AND GRAVEL (40/50/10) Fi coarse-grained, poorly sorted / well graded, other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                         |  |  |
| 210                                | SW/<br>SP-<br>SM                |                | same as above; gravel to 2" length.  SAND (10/85/5) Fine- to coarse-grained, poorly sorted / well graded, to SAND WITH SILT (5/85 fine- to medium-grained, predominantly fine, tra coarse, moderately sorted/graded, otherwise sa 169-188 ft; increased silt fraction at 210-212.5 ft weak HCl reaction at 210 ft, 211-212.5 ft and 214.5-215 ft.  SAND (0/100/T) Fine-grained, well sorted / poorly sorted /  | /10),<br>ice<br>ame as<br>t; | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |  |
|                                    | SM                              |                | graded, angular.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J                            |                                         |  |  |
|                                    |                                 |                | SILTY SAND (0/80/20) Fine- to coarse-grained poorly sorted / well graded, angular to subangul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                                         |  |  |
| _<br>220                           | SW                              |                | SAND WITH SILT (5/85/10) Fine- to medium-g predominantly fine, trace coarse, moderately sorted/graded, angular to subangular; trace fine gravel; increased coarse sand and gravel fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>;</b>                     | XXXXX                                   |  |  |
|                                    |                                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                         |  |  |

|                           |                                     |                  |                  | ESTE-P                                                                                                                                                                                                                                                                                |                      | ECT: MWA-OESTE<br>ECT NUMBER:1311.01    |
|---------------------------|-------------------------------------|------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|
|                           |                                     |                  |                  | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                      |                      |                                         |
| DRILLING                  | G COMPA                             | ANY: A           | ABC LIO          | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                                                                                                     | LOCA                 | ΓΙΟΝ: Oeste Area-Cayucos St.            |
| LOGGED                    | ) BY: <i>G. C</i>                   | Cranha           | am PG# !         |                                                                                                                                                                                                                                                                                       |                      | Legend:  No Reaction Moderate           |
| REVIEWI                   | ED BY: S                            | . Praz           | en PG#           | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                           | \ \                  | /ery Weak Strong                        |
| SAMPLIN                   |                                     | IOD: (           |                  | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                   | V                    | Veak Lab Grab                           |
| DEPTH<br>(feet)<br>HCI    | Reaction<br>RECOVERY/<br>LAB SAMPLE | SOSN             | GRAPHIC<br>LOG   | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                 |                      | WELL CONSTRUCTION<br>DIAGRAM            |
| 220                       |                                     | SW-<br>SM        |                  | 219-220 ft.  SAND WITH SILT AND GRAVEL (20/70/10)  Otherwise same as above; gravel to 2½" length;  HCl reaction at 221 ft.                                                                                                                                                            | ; weak               | XXXXX                                   |
| _<br>_<br>_<br>_<br>225 — |                                     | SW               |                  | SAND (5/90/5) Yellowish brown (10YR 5/4), fincoarse-grained, poorly sorted / well graded, ang subangular; trace silt; trace fine gravel, locally to length.                                                                                                                           | ular to              | KKKKKKKKKKKK                            |
| -                         |                                     |                  |                  | No recovery.                                                                                                                                                                                                                                                                          | ( 4/4)               | XXXXXXXXX                               |
| 230 —                     |                                     | SW-<br>SM        |                  | SAND WITH SILT (10/80/10) Olive brown (2.5Y fine- to coarse-grained, poorly sorted / well grad angular to subangular; trace gravel to 2" length; HCl reaction at 230-234 ft; probably highly distudue to difficulty recovering core interval.                                         | led,<br>weak<br>rbed | KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |
|                           |                                     | SM               | -<br>-<br>-<br>- | SILTY SAND (10/70/20) Otherwise same as ab gravel fine; thin (~1" thick) interbed of dark gray                                                                                                                                                                                        | sandy                |                                         |
| 235 — — — — — —           |                                     | SP               |                  | silt at 235 ft; probably highly disturbed due to diffrecovering core interval.  SAND (5/90/5) Olive brown (2.5Y 4/4), fine- to coarse-grained, predominantly fine, moderately sorted/graded, angular to subangular; trace silt; fine gravel; lower contact gradational over interval. | trace<br>val         | **************************************  |
| _<br>240                  |                                     | SP/<br>SP-<br>SM |                  | SAND (0/95/5) to SAND WITH SILT (0/90/10) Yellowish brown (10YR 5/4 to 5/6), fine- to very fine-grained, trace medium to coarse, well sorte poorly graded, angular to subangular; locally tra                                                                                         | d /                  |                                         |

| MONITOR WE                                     | LL OESTE-P                                                                                                                                                                                                                                                                                 | PROJECT: MWA-OESTE                     |  |  |  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| DATES DRILLED :12/20                           | /2021-1/03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                   | PROJECT NUMBER: 1311.01                |  |  |  |
| DRILLING COMPANY: A                            | ABC Liovin DRILLING METHOD: Sonic 10.0"-8.0" at 100',                                                                                                                                                                                                                                      | LOCATION: Oeste Area-Cayucos St.       |  |  |  |
| LOGGED BY: G. Cranha                           |                                                                                                                                                                                                                                                                                            | Legend:  No Reaction Moderate          |  |  |  |
| REVIEWED BY: S. Praze                          |                                                                                                                                                                                                                                                                                            | Very Weak Strong                       |  |  |  |
| SAMPLING METHOD: C                             | 700 700 200                                                                                                                                                                                                                                                                                | Weak Lab Grab                          |  |  |  |
| DEPTH (feet) HCI Reaction RECOVERY/ LAB SAMPLE | LITHOLOGIC DESCRIPTION OF MATERIAL S                                                                                                                                                                                                                                                       | WELL CONSTRUCTION<br>DIAGRAM           |  |  |  |
| 240 SP/ SP- SM — — — —                         | micaceous; with interbed(s) of silty sand (0/70/otherwise same, at 238.5-239.5 ft.                                                                                                                                                                                                         | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |  |  |  |
| GP                                             | GRAVEL WITH SAND (60/35/5) Gravel to 2" le with cobbles to 3½" - 4", subangular, granitic; s                                                                                                                                                                                               |                                        |  |  |  |
| 245 — SW ; — — — — — — — — — — — — — — — — — — | fine- to very fine-grained, trace medium to coar trace silt.  SAND (0/95/5) Yellowish brown (10YR 5/4), fire coarse-grained, poorly sorted / well graded, an subangular; trace silt; trace fine gravel to 1" ler below 246 ft; probably highly disturbed due to crecovering core interval. | ne- to gular to ngth                   |  |  |  |
| 250 — SM                                       | SILTY SAND (0/80/20) Yellowish brown (10YF 5/4), fine- to medium-grained, trace coarse, moderately sorted/graded, angular to subangu lower contact gradational.                                                                                                                            |                                        |  |  |  |
| 255 — SW                                       | SAND (0/95/5 to 5/90/5) Otherwise same as 244-249.5 ft; locally trace gravel, increased grafraction to 10% and color change to dark grayis brown (2.5Y 4/2) below 256 ft; possible schist (256.5 ft.                                                                                       | sh clast at                            |  |  |  |
| SP-<br>SM                                      | SAND WITH SILT (0/90/10) Yellowish brown (5/6), fine- to medium-grained, predominantly filtrace coarse, moderately sorted/graded, angula subangular; trace fine gravel below 262 ft; wear reaction at 258-259 ft.                                                                          | ne,<br>ar to                           |  |  |  |



| MOI                  | VIT             | OR                      | WE        | ELLC           | DESTE-P                                                                                                                                                                                                     |                         | ECT: MWA-OESTE                   |  |  |  |
|----------------------|-----------------|-------------------------|-----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|--|--|--|
| DATES                | S DRIL          | LED                     | :12/20    | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                            | PROJECT NUMBER: 1311.01 |                                  |  |  |  |
| DRILLI               | NG C            | OMPA                    | ANY: A    | ABC Lio        | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                           | LOCAT                   | LOCATION: Oeste Area-Cayucos St. |  |  |  |
| LOGG                 | ED BY           | ': G. C                 | Cranha    | am PG# :       |                                                                                                                                                                                                             |                         | Legend:  Io Reaction Moderate    |  |  |  |
| REVIE'               | WED             | BY: <i>S</i>            | . Praz    | en PG#         | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                 |                         | /ery Weak Strong                 |  |  |  |
| SAMPI                | _ING I          |                         | IOD: (    | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                         | V                       | Veak Lab Grab<br>Sample          |  |  |  |
| DEPTH<br>(feet)      | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | USCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                       |                         | WELL CONSTRUCTION<br>DIAGRAM     |  |  |  |
| 280<br>_             |                 |                         | SP        |                | SAND (T/95/5) Light olive brown (2.5Y 5/3),<br>fine-grained, trace medium to coarse, well sorted /<br>poorly graded, angular to subangular; trace silt; trac<br>fine gravel; weak HCI reaction at 280.5 ft. | :e                      |                                  |  |  |  |
| _<br>_<br>_<br>285 — |                 |                         | SP-<br>SM |                | SAND WITH SILT (0/90/10) Same as 264.5-26 weak HCl reaction at 285 ft; lower contact grada                                                                                                                  |                         |                                  |  |  |  |
| -<br>-<br>-          |                 |                         | SP        |                | SAND (T/95/5 to 5/90/5) Same as 277.5-281.5 trace fine gravel to ¾" length; lower contact gradational.                                                                                                      | ft;                     |                                  |  |  |  |
| 290 —<br>—<br>—<br>— |                 | *                       | ML        |                | SANDY SILT (0/40/60) Olive brown (2.5Y 4/3), plasticity; sand very fine- to medium-grained, predominantly fine, trace coarse; weak HCl reac 290-291 ft and 291.5-295 ft; lower contact grada                | tion at                 | 291-                             |  |  |  |
| 295 —<br>—           |                 |                         | SP/<br>ML |                | SAND (5/90/5) Same as 285-290 ft, interbedde SANDY SILT (0/40/60), same as above; weak Freaction at 295-296.5 ft.                                                                                           |                         |                                  |  |  |  |
|                      |                 |                         | ML        |                | SANDY SILT (0/30/70) Nonplastic, otherwise same as 290-295 ft; weak HCl reaction at 298-301 ft and 302.5-305 ft.                                                                                            |                         |                                  |  |  |  |
| 300                  |                 |                         |           |                |                                                                                                                                                                                                             |                         | Y Y Y ]                          |  |  |  |

|                               | ONITOR WELL OESTE-P TES DRILLED: 12/20/2021-1/03/2022 DATE COMPLETED: 1/5/2022 |                         |                  |                |                                                                                                                                                                                                                                                                             |                       | PROJECT: MWA-OESTE<br>PROJECT NUMBER: 1311.01 |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------|-------------------------|------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|--|--|--|
|                               |                                                                                |                         |                  | ABC Liov       |                                                                                                                                                                                                                                                                             | LOCA                  | ATION: Oeste Area-Cayucos St.                 |  |  |  |
| LOGG                          | ED BY                                                                          | ′: G. C                 | Cranha           | am PG# !       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                           |                       | Legend:  No Reaction Moderate                 |  |  |  |
| REVIE'                        | WED                                                                            | BY: <i>S</i>            | . Praz           | en PG#         | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                                                                                                 |                       | Very Weak Strong                              |  |  |  |
| SAMPI                         | ING                                                                            |                         | IOD: (           | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                         |                       | Weak Lab Grab Sample WELL CONSTRUCTION        |  |  |  |
| DEPTH<br>(feet)               | HCI<br>Reaction                                                                | RECOVERY/<br>LAB SAMPLE | USCS             | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                       |                       | DIAGRAM                                       |  |  |  |
| 300<br>—<br>—<br>—            |                                                                                |                         | ML               |                | SANDY SILT (0/30/70) Nonplastic, otherwise same as 290-295 ft; weak HCI reaction at 298-301 ft and 302.5-305 ft.                                                                                                                                                            |                       |                                               |  |  |  |
| 305 —<br>—<br>—<br>—          |                                                                                |                         | SP               |                | SAND (5/90/5) Same as 285-290 ft, gravel to 1 length; thin (~1") carbonate-cemented layer at 3 weak HCl reaction at 308-309 ft.                                                                                                                                             |                       |                                               |  |  |  |
| 310 —<br>—<br>—<br>—<br>315 — |                                                                                |                         | SP-<br>SM/<br>SM |                | SAND WITH SILT (0/90/10) to SILTY SAND (0/Olive brown (2.5Y 4/3), fine- to very fine-grained trace medium, locally trace coarse, well sorted a graded, angular to subangular; silt fraction varied weak HCl reaction at 309.5-314.5 ft; very weak reaction at 315.5-316 ft. | d,<br>/ poorly<br>es; |                                               |  |  |  |
| _                             |                                                                                |                         | SP               |                | SAND (0/95/5) Fine-grained to fine- to medium-grained, predominantly fine, trace coar well sorted / poorly graded to moderately sorted/graded, angular to subangular; trace silt; HCl reaction at 317 ft.                                                                   |                       |                                               |  |  |  |
| 320                           |                                                                                |                         | SP-<br>SM        |                | SAND WITH SILT (0/90/10) Light olive brown (5/3), fine- to very fine-grained, trace medium, w sorted / poorly graded, angular; micaceous; carbonate-cemented layer, several inches thick                                                                                    | ell                   |                                               |  |  |  |

| MON                                       | ITC      | )R                      | WE        | ELL C          | DESTE-P                                                                                                                                                                                                                                                                                                         | PROJ                    | ECT: MWA-OEST         | Έ                  |
|-------------------------------------------|----------|-------------------------|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|--------------------|
| DATES [                                   | ORILL    | .ED :                   | 12/20     | /2021-1/       | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                                                                                                                                | PROJECT NUMBER: 1311.01 |                       |                    |
| DRILLING                                  | G CO     | MPA                     | NY: A     | ABC Lio        | vin DRILLING METHOD: Sonic<br>10.0"-8.0" at 100',                                                                                                                                                                                                                                                               | LOCAT                   | ΓΙΟΝ: Oeste Area      | -Cayucos St.       |
| LOGGE                                     | O BY:    | G. Cı                   | ranha     | am PG# :       |                                                                                                                                                                                                                                                                                                                 |                         | Legend:  lo Reaction  | Moderate           |
| REVIEW                                    | ED B     | Y: <i>S.</i>            | Praz      | en PG#         |                                                                                                                                                                                                                                                                                                                 |                         | /ery Weak             | Strong             |
| SAMPLIN                                   |          |                         | DD: C     | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                             | V                       | Veak 🛊                | Lab Grab<br>Sample |
| DEPTH<br>(feet)                           | Reaction | KECOVEKY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                           |                         | WELL CONSTR<br>DIAGRA |                    |
| 320 — — — — — — — — — — — — — — — — — — — |          | Y                       | SP-<br>SM | ٥              | 327 ft; weak HCl reaction at 318.5-320 ft, HCl re at 322.5-324 ft, weak HCl reaction at 324.5-328 lower contact gradational over interval 328.5-32                                                                                                                                                              | ft;                     |                       |                    |
| 330 —                                     |          |                         | SP<br>ML  |                | SAND (0/95/5) Light olive brown (2.5Y 5/3), fine-grained, well sorted / poorly graded, angula trace silt; micaceous.  SANDY SILT (0/30/70) Light yellowish brown (2 6/3), low plasticity; sand fine- to very fine-graine weak HCl reaction at 331-333 ft; lower contact gradational over interval 332.5-333 ft. | 2.5Y                    |                       |                    |
|                                           | 1        |                         | SP        |                | SAND (0/95/5) Same as 329-330 ft; coarsens downward.  SAND (5/90/5) Yellowish brown (10YR 5/4), fin                                                                                                                                                                                                             | o to                    |                       |                    |
| 335 —                                     | _        |                         | SW        |                | coarse-grained, poorly sorted / well graded, ang subangular; trace silt; trace fine gravel.                                                                                                                                                                                                                     |                         |                       |                    |
| -                                         | -        |                         | ML        |                | SANDY SILT (0/30/70) Same as 330-332.5 ft; v few very fine carbonate streaks in intact fragme                                                                                                                                                                                                                   |                         |                       |                    |
|                                           | 1        |                         | SP-<br>SM |                | weak HCl reaction.  SAND WITH SILT (0/90/10) Pale brown (10YR otherwise same as 317.5-328.5 ft; lower contact                                                                                                                                                                                                   | 6/3),                   |                       |                    |
|                                           |          |                         | SM        |                | gradational. SILTY SAND (0/70/30) Otherwise same as about HCl reaction at 338-338.5 ft.                                                                                                                                                                                                                         | ove;                    |                       |                    |
| 340                                       | 7        | *                       | ML        |                | SANDY SILT (0/40/60) Yellowish brown (10YR stiff, low to medium plasticity; sand fine- to medium-grained; trace clay; with few carbonate                                                                                                                                                                        |                         |                       |                    |

| MON             | <b>NIT</b>      | OR                      | WE        | ELL C          | ESTE-P                                                                                                                                                                                            |               | ECT: MWA-OEST         |                    |
|-----------------|-----------------|-------------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|--------------------|
| DATES           | DRIL            | LED                     | :12/20    | )/2021-1/      | 03/2022 DATE COMPLETED: 1/5/2022                                                                                                                                                                  | PROJ          | ECT NUMBER: 13        | 311.01             |
| DRILLI          | NG C            | OMPA                    | ANY: A    | ABC Lio        | oin DRILLING METHOD: Sonic 10.0"-8.0" at 100',                                                                                                                                                    | LOCA          | ΓΙΟΝ: Oeste Area      | -Cayucos St.       |
| LOGGE           | ED BY           | ': G. C                 | Cranha    | am PG# :       |                                                                                                                                                                                                   |               | Legend:  No Reaction  | Moderate           |
| REVIEV          | WED             | BY: <i>S</i>            | . Praz    | en PG#         | 9816 LAND SURFACE ELEV: TBD                                                                                                                                                                       | \             | /ery Weak             | Strong             |
| SAMPL           | ING I           |                         | IOD: (    | Continous      | TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                               | V             | Veak 🛊                | Lab Grab<br>Sample |
| DEPTH<br>(feet) | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS      | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                             |               | WELL CONSTR<br>DIAGRA |                    |
| 340<br>—<br>—   |                 |                         | ML        |                | streaks in intact fragments; decreased silt fraction below 341 ft; HCl reaction at 338.5-341 ft, weak reaction at 342.5-343 ft.                                                                   |               |                       |                    |
|                 |                 |                         | SP-<br>SM |                | SAND WITH SILT (5/85/10) Same as 317.5-32 trace fine gravel to 1" length; weak HCl reaction                                                                                                       |               |                       |                    |
| _               |                 |                         |           |                | No recovery.                                                                                                                                                                                      |               |                       |                    |
| 350 —<br>—      |                 |                         | ML        |                | Probable SANDY SILT (0/30/70) Same as 338.5-343 ft; weak HCl reaction at 351-353 ft; highly disturbed due to difficulty recovering core interval.                                                 |               |                       |                    |
| 355 —<br>—      |                 |                         | SM        |                | SILTY SAND (0/80/20) Light olive brown (2.5Y fine- to very fine-grained, trace medium, well so poorly graded, angular; weak HCl reaction; high disturbed due to difficulty recovering core interv | rted /<br>lly |                       |                    |
| <br><br>360     |                 |                         | SP        |                | SAND (0/95/5) Olive brown (2.5Y 4/3), fine- to medium-grained, predominantly fine, moderatel sorted/graded, angular to subangular; trace silt; disturbed due to difficulty recovering core interv | highly        |                       |                    |
|                 |                 |                         |           |                |                                                                                                                                                                                                   |               |                       |                    |

| MONITOR WELL OESTE-P                                         |                 |                         |               |                | PROJECT: MWA-OESTE                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                           |                  |
|--------------------------------------------------------------|-----------------|-------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------|
| DATES DRILLED :12/20/2021-1/03/2022 DATE COMPLETED: 1/5/2022 |                 |                         |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                             | PROJECT NUMBER: 1311.01   |                           |                  |
| DRILLI                                                       | NG C            | OMPA                    | ۹NY: A        | ABC Lio        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCA                      | TION: Oeste Area-Ca       | yucos St.        |
| LOGGI                                                        | ED BY           | 1: G. C                 | <i>Cranha</i> | am PG# :       | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                                                                           |                           | Legend:                   |                  |
| REVIE                                                        | WED             | BY: <i>S</i>            | . Praz        | en PG#         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                           | oderate<br>rong  |
| SAMPL                                                        | ING I           |                         | IOD: (        | Continou       | S TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                                                                       |                           | vveak Sa                  | nb Grab<br>ample |
| DEPTH<br>(feet)                                              | HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE | NSCS          | GRAPHIC<br>LOG | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                       |                           | WELL CONSTRUCT<br>DIAGRAM | ΓΙΟΝ             |
| 360                                                          |                 |                         | ML            |                | SILT WITH SAND (0/20/80) Olive brown (2.5Y low plasticity; sand fine-grained, with coarser sa                                                                                                                                                                                                                                                                                                                                               |                           |                           |                  |
| _                                                            |                 |                         | SP-<br>SM     |                | grains actually carbonate-cemented fragments; reaction; lower contact gradational; highly disturdue to difficulty recovering core interval.  SAND WITH SILT (0/90/10) Light olive brown (5/3), fine- to very fine-grained, trace medium, we sorted / poorly graded, angular to subangular; micaceous; reduced very fine sand fraction at 363-364 ft; HCI reaction at 361-361.5 ft, weak H reaction at 362-363 ft and 364-364.5 ft, strong H | HCI<br>bed<br>2.5Y<br>ell |                           |                  |
| 365 —<br>—                                                   |                 |                         | SM            |                | reaction at 364.5 ft. SILTY SAND (0/60/40) Yellowish brown (10YR fine- to medium-grained, predominantly fine, moderately sorted/graded, angular to subangula                                                                                                                                                                                                                                                                                | ar;                       |                           |                  |
| _                                                            |                 |                         | SP-<br>SM     |                | trace clay; lower contact gradational over interval 365.5-366 ft.  SAND WITH SILT (0/90/10) Same as 361-363 weak HCl reaction at 367.5-368.5 ft.                                                                                                                                                                                                                                                                                            |                           |                           |                  |
| _                                                            |                 |                         | ML            |                | SILT (0/10/90) Light yellowish brown (2.5Y 6/3) nonplastic; trace fine sand; weak HCl reaction a 368.5-369 ft, HCl reaction at 369-369.5 ft.                                                                                                                                                                                                                                                                                                |                           |                           |                  |
| 370 —<br>—<br>—                                              |                 |                         | SP-<br>SM     |                | SAND WITH SILT (5/85/10) Grayish brown (2.5 5/2), fine- to coarse-grained, predominantly fine moderately sorted/graded, angular to subangula trace fine gravel; HCI reaction at 369.5-373.5 ft, carbonate streaks and possible thin caliche layer                                                                                                                                                                                           | r;<br>ar;<br>with         |                           |                  |
| _                                                            |                 |                         | ML            |                | SILT WITH SAND (0/20/80) Otherwise same as 368.5-369.5 ft; HCl reaction, with carbonate stre                                                                                                                                                                                                                                                                                                                                                |                           |                           |                  |
| 375 —<br>—                                                   |                 |                         | SP-<br>SM     |                | and possible thin caliche layer(s).  SAND WITH SILT (10/80/10) Otherwise same a 369.5-373.5 ft; interbed of clay to sandy clay, ~2 thick, hard, at 375.5 ft; weak HCl reaction at 375.5-376 ft.                                                                                                                                                                                                                                             | as                        |                           |                  |
| _                                                            |                 |                         | SM            |                | Probable SILTY SAND Otherwise same as about weak HCl reaction; probably highly disturbed dudifficulty recovering core interval.                                                                                                                                                                                                                                                                                                             | ie to                     |                           |                  |
| _<br>380                                                     |                 |                         | SP-<br>SM     |                | SILTY SAND (0/75/25) Yellowish brown (10YR fine-grained, trace medium, well sorted / poorly graded, angular to subangular; locally very dens based on intact fragments; lower contact gradat                                                                                                                                                                                                                                                | se                        |                           |                  |

| MONITOR WELL OESTE-P               |                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                               |                                   | PROJECT: MWA-OESTE            |                    |  |
|------------------------------------|---------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|--------------------|--|
| DATES DRII                         | LED :12/20                      | PROJECT NUMBER: 1311.01          |                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                    |  |
| DRILLING C                         | OMPANY:                         | LOCATION: Oeste Area-Cayucos St. |                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                    |  |
| LOGGED BY                          | ſ∶G. Cranh                      | am PG#                           | 10.0"-8.0" at 100',<br>5897 BOREHOLE DIA.: 8.0"-6.0" at 320'<br>6.0"-4.0" at 375'                                                                                                                                                                                                                                                                                                             |                                   | Legend:  No Reaction Moderate |                    |  |
| REVIEWED                           | BY: <i>S. Praz</i>              | zen PG#                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                   | /ery Weak                     | Strong             |  |
| SAMPLING                           |                                 | Continou                         | S TOTAL DEPTH OF BORING: 400 feet bls                                                                                                                                                                                                                                                                                                                                                         | V                                 | Veak 🔻                        | Lab Grab<br>Sample |  |
| DEPTH<br>(feet)<br>HCI<br>Reaction | RECOVERY/<br>LAB SAMPLE<br>USCS | GRAPHIC<br>LOG                   | LITHOLOGIC DESCRIPTION<br>OF MATERIAL                                                                                                                                                                                                                                                                                                                                                         |                                   | WELL CONSTR<br>DIAGRA         |                    |  |
| 380 —                              | SP-<br>SM                       |                                  | probably highly disturbed due to difficulty recover core interval.  SAND WITH SILT (0/90/10) Brown (10YR 5/3), otherwise same as above; locally higher silt consilty sand (0/80/20); locally fine- to very fine-grawith thin local interbeds of silt with sand (0/20/80 strong HCl reaction at 381-386 ft; 379-381 ft interprobably highly disturbed due to difficulty recover core interval. | itent to<br>ined;<br>0);<br>erval |                               |                    |  |
| -                                  | ML                              |                                  | SILT (0/5/95) Light olive brown (2.5Y 5/3), nong to low plasticity; trace fine to coarse sand, some carbonate-cemented fragments; strong HCl read SAND WITH SILT (0/90/10) Fine- to very                                                                                                                                                                                                      | e are                             |                               |                    |  |
| _                                  | SP-<br>SM                       |                                  | fine-grained, otherwise same as 379-386 ft; wear reaction.                                                                                                                                                                                                                                                                                                                                    |                                   |                               |                    |  |
| 390 —                              | ML                              |                                  | SILT WITH SAND (0/20/80) Otherwise same as 386-388 ft; grades downward to SANDY SILT (0/40/60) below 390.5 ft; coarsens downward to fine sand; weak HCl reaction at 389.5-390 ft, str HCl reaction at 390-390.5 ft, weak HCl reaction 390.5-392.5 ft; lower contact gradational.                                                                                                              | very                              |                               |                    |  |
| _                                  | SM/<br>SP-<br>SM                |                                  | SILTY SAND (0/60/40) to SAND WITH SILT (0/<br>Otherwise same as 388-389.5 ft; continues<br>coarsening downward; weak HCl reaction at<br>392.5-393 ft.                                                                                                                                                                                                                                         | ·                                 |                               |                    |  |
| 395 —                              | SP                              |                                  | SAND (5/90/5) Grayish brown (2.5Y 5/2), fine-medium-grained, trace coarse, moderately sorted/graded, angular to subangular; trace silt; fine gravel; thin caliche layer at base.                                                                                                                                                                                                              |                                   |                               |                    |  |
| -                                  | ML                              |                                  | SILT (0/10/90) Otherwise same as 386-388 ft; laminated; HCl reaction.                                                                                                                                                                                                                                                                                                                         |                                   |                               |                    |  |
| 400                                | SP-<br>SM                       |                                  | SAND WITH SILT (5/85/10) Trace fine gravel, otherwise same as 388-389.5 ft; gravel locally c to 3" length at 397.5 ft and 399 ft, with marble c 399 ft; locally carbonate-cemented with caliche layer(s) at 397.5 ft and 399 ft; strong HCl reaction 399 ft, weak HCl reaction at 399-400 ft.                                                                                                 | last at                           |                               |                    |  |
| 400                                |                                 | ■10.01 (10.05 (10.05)            |                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                               |                    |  |



HARGIS+ASSOCIATES, INC. HYDROGEOLOGY • ENGINEERING

FIGURE 3.

SCHEMATIC CONSTRUCTION DIAGRAM,

MONITOR WELL OESTE-P

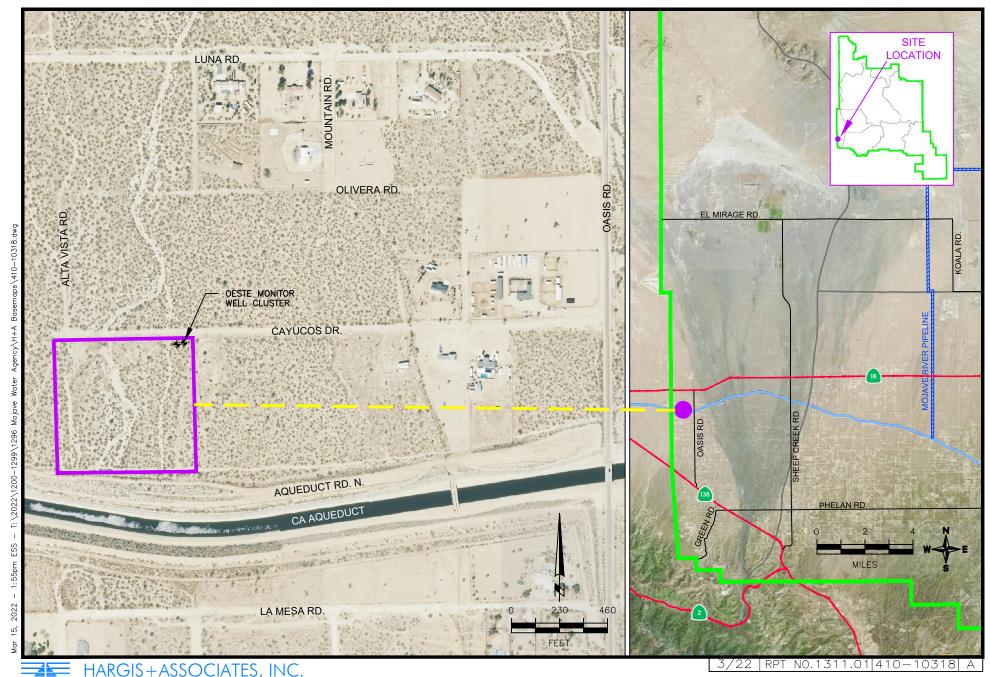



FIGURE 1.
WELL SITE LOCATION MAP











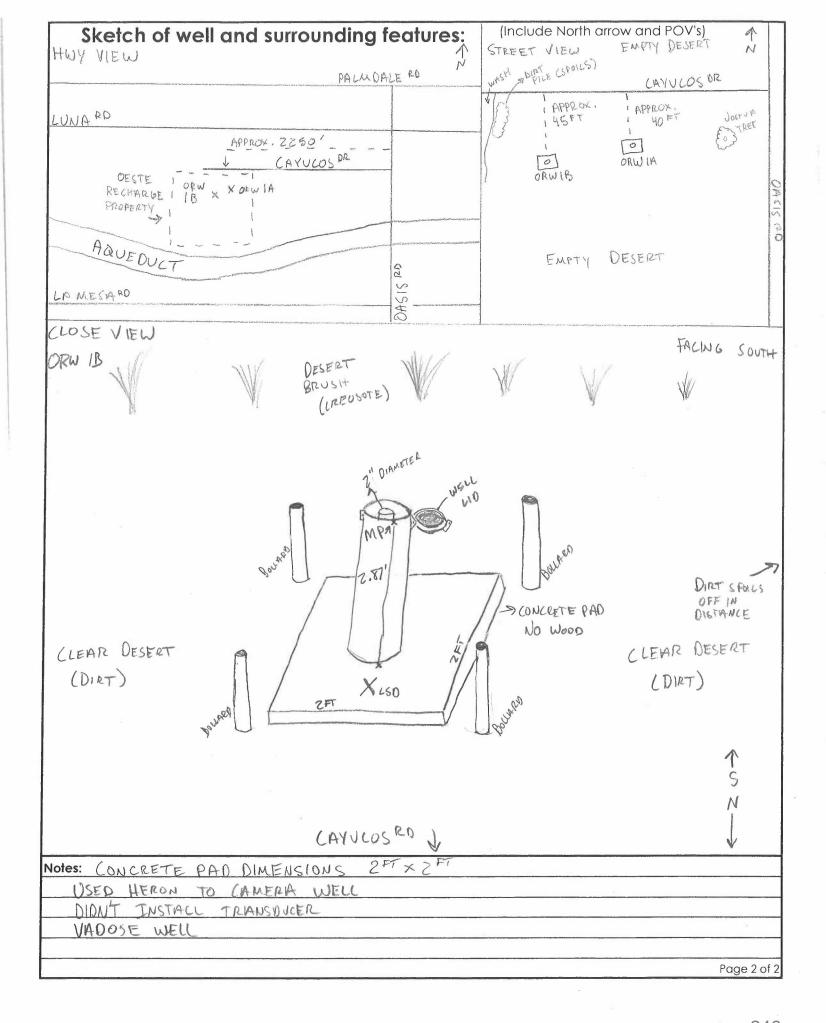
SWN:

Common Name: DESTE RECHARGE WELL ORWIB

Date: 3/23/2022

Completed By: M, JOHN SON

Lat/Long (DMS) & Datum: 34° 29' 16.08"N , 117° 39'0.77"W


Log Completed

## MWA WELL CANVASSING SHEET

| Site Address:                                                     | APN: 309908101                                                |                                                                                                                                                   |                           |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| Cross Street:                                                     | OASIS RD                                                      |                                                                                                                                                   |                           |  |  |  |
| General Location:                                                 | LOCATED TOWARD N                                              | ORTHEAST SIDE OF PR                                                                                                                               | OPERTY                    |  |  |  |
| Name of GPS Point:                                                | OESTE RECHARGE WEL                                            | L 1B                                                                                                                                              | s: 163 <sup>020</sup>     |  |  |  |
| GPS Measurement Point Description:                                | LSD IS X ON CONCRETE PAD NORTH SIDE OF CASING                 |                                                                                                                                                   |                           |  |  |  |
| Well Type:                                                        | Domestic Agriculture                                          | al Production Monitor                                                                                                                             | ing                       |  |  |  |
| Status:                                                           | Active     Inactive                                           | Pump in Well: Yes X                                                                                                                               | )                         |  |  |  |
| Site Status:                                                      | site M=plugged N=meas-discontinu-<br>recently pumping V=forei | tage D=dry E=recently flowing F=flowing G=nearb<br>ed O=obstructed P=pumpling R=recently pumped<br>gn substance W=well destroyed X=affected by su | S=nearby pumping T=nearby |  |  |  |
| Casing Diameter (inches):                                         | 2"                                                            | Casing Material: PVC                                                                                                                              |                           |  |  |  |
| Height of Measuring Point (FT ALSD):                              | 2.87′                                                         | Photograph of Measuring Poi                                                                                                                       | int:                      |  |  |  |
| *ALSD - above land surface datum                                  |                                                               | Measurement Method:                                                                                                                               |                           |  |  |  |
| Measuring Point Description:                                      | T.O.C. NORTH SIDE                                             |                                                                                                                                                   | MWA & USGS ID#            |  |  |  |
| LSD Description:                                                  | X ON CONCRETE PA                                              | O, NORTH SIDE OF C                                                                                                                                | ACING                     |  |  |  |
| Depth to Water (feet): NOTE                                       | DRY WELL, VADOSE W                                            | BLSD Time                                                                                                                                         | : 11:20                   |  |  |  |
| Depth to Water (feet):                                            | ВМР                                                           | BLSD                                                                                                                                              | Datum(PST)/PDT            |  |  |  |
| DTW Calculation:                                                  |                                                               |                                                                                                                                                   |                           |  |  |  |
| Total Depth of Well (feet):<br>*BMP - below measuring point, BLSL |                                                               | 90.93′BLSD                                                                                                                                        |                           |  |  |  |
| Total Depth Calculation:                                          | 293.8'-2,87'=290                                              | .93′                                                                                                                                              |                           |  |  |  |
| # of Photographs Taken:                                           | MANY                                                          |                                                                                                                                                   |                           |  |  |  |
| *Measuring Point, North, East, Soul Video Recorded:               | Th, West  YES                                                 | Transducer Installed:                                                                                                                             | NO                        |  |  |  |

(Continued on other side)

Page 1 of 2





















385 N Arrowhead Ave, 2nd floor, San Bernardino, CA 92415 | Phone: 800.442.2283 • Fax: 909.387.4323 Email: EHS.CustomerService@dph.sbcounty.gov

Public Health Environmental Health Services www.SBCounty.gov www.sbcounty.gov/dph/dehs Phone: (800) 442-2283



## **APPLICATION FOR WELL PERMIT**

MW-1

| THIS SECTION T                                          |                                   | PLICANT • HEALTH PERMITS               | ARE NOT TRAN        | SFERABLE                    |
|---------------------------------------------------------|-----------------------------------|----------------------------------------|---------------------|-----------------------------|
| Property Owner Mojave Water                             |                                   | PERTY INFORMATION                      |                     | Phone Number (760) 946-7061 |
| Site Address 535 Cayucos R                              |                                   | City Pinon Hills                       | State CA            | <sup>Zip</sup> 92371        |
| Assessor's Parcel Number 30990                          | 8101                              | Email                                  |                     | <u> </u>                    |
| Township N/S Tier 5N                                    |                                   | E/W Range <b>7W</b>                    | Section 30          |                             |
| Well Head Latitude (decimal) 34                         |                                   | Longitude (decimal) -117.6500          | _                   |                             |
| Property Owner's Mailing Address 1384                   | 6 Conference Center D             | r. City Apple Valley                   | State CA            | <sup>Zip</sup> 92307        |
|                                                         | 2 - CONS                          | ULTANT INFORMATION                     |                     |                             |
| Name of Consultant Hargis and                           | Associates, Inc.                  | Email SPRAZEN@HAR                      | RGIS.COM            | Phone Number 858-410-7404   |
| Address 9171 Towne Cen                                  | tre Drive, Suite 37               | 5 <sup>City</sup> San Diego            | State CA            | <sup>Zip</sup> 92122        |
| Name of Driller                                         | 3 – REGISTERED                    | WELL DRILLER INFORMATION               |                     | Ohana Niverban              |
| Name of Driller ABC Liovin D                            | rilling, Inc.                     |                                        |                     | Phone Number 562-981-8575   |
| Email                                                   |                                   | jack@abcdrilling.com                   | C-57 License Num    | <sup>nber</sup> 422904      |
| Return well permit to                                   |                                   | ☐ Property Owner                       | Return by           | ☐ Mail ■ Email              |
|                                                         | 4-                                | TYPE OF WORK                           |                     |                             |
| ■ New                                                   | Reconstr                          |                                        | ☐ Destruc           |                             |
| Date of Work 12/13/2021                                 | Start Date 12/13/2                | 021 Completion Date 12/31/2021         | Estimated groundw   | rater depth 550-600 ft      |
|                                                         |                                   | - WELL TYPE                            |                     |                             |
| ☐ Agriculture                                           | ☐ Geothermal                      | L                                      | Industrial          |                             |
| Cathodic                                                | ☐ Horizontal                      |                                        | Monitoring/Obs      | servation                   |
| ☐ Community/PWS/City – Specify Use:                     | Use Below Residential - community | – cannot be used as a vell             | _} Test<br>□ Other  |                             |
|                                                         | 6-                                | ANNULAR SEAL                           |                     |                             |
| Seal Depth (ft.)21                                      |                                   |                                        |                     |                             |
| ☐ Driven Conductor Diameter (i                          | n.)                               | Wall (gauge) (in.) SCH                 | 80 🔳 Drilling me    | ethod Sonic                 |
| Sealing Material Cement                                 | Bentonite Grout                   | ■ Thickness (in.) 2                    |                     |                             |
| Sealing material shall be placed in on                  | ne continuous pour. Annular sea   | al thickness must be at least 2 inches | for public water si | upply wells.                |
| ITEMS 7 THRO                                            |                                   | D FOR NEW WELLS, EXACT F               | OR ALL OTHER        | RWELLS                      |
| Proposed Depth of Well (ft.) 400                        | Existing Depth o                  | - DIMENSIONS<br>f Well (ft.)           | Diameter of Bo      | ore (in.) 8                 |
| [[] 医多数性多数性 (1) [[] [[] [] [] [] [] [] [] [] [] [] [] [ | 8 – C.                            | ASING INSTALLED                        |                     |                             |
| ■ Casing Material □ A                                   | TSM/AWWA/APPI                     |                                        |                     |                             |
| From (ft.)                                              | To (ft.)                          | Diameter (in.)                         |                     | Wall (Gauge)                |
| 300                                                     | 0                                 | 2                                      |                     | SCH 80                      |
|                                                         |                                   |                                        |                     |                             |
| Gravel Pack  Yes                                        | □ No                              | From (ft.) 325                         | To (ft.)            | 295                         |
| Specify Other Backfill Material Bentonite               | Seal                              | From (ft.) 295                         | To (ft.)            | 21                          |
| SASSINI HIGHSON                                         |                                   | 400                                    | 3                   | 325                         |

| BEHENHINGER                          | HERITIGESES TAX                                                     |                                                | - PERFORATION               | NS (list all if a                                                     | pplicable)                                               |                          |                                                                 |
|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------|-----------------------------------------------------------------|
| From (ft.)32                         | 20                                                                  |                                                | ,,,,,,                      | Well Screen S                                                         |                                                          | Pumping Rate             | (gpm) unknown                                                   |
|                                      |                                                                     | V 2 9 5 5 6 1                                  | 0 - SEALED ZON              | • • • • • • • • • • • • • • • • • • • •                               | pplicable)                                               |                          |                                                                 |
| From (ft.)29                         | )5                                                                  |                                                |                             | To (ft.) ()                                                           | -                                                        | 400-325                  |                                                                 |
| (inc                                 |                                                                     | vells), sewage o                               | and label the follo         |                                                                       |                                                          |                          | erty lines, other wells<br>its, cesspools), lakes               |
| b) Indica<br>sca                     | ate the distance, in                                                | n feet, of any o                               | f the above which           |                                                                       |                                                          |                          | needs to be drawn to to the well site within                    |
| c) 🔳                                 | None of the above                                                   | is within 500 fe                               | et.                         |                                                                       |                                                          |                          |                                                                 |
| d) Soli                              | d or Liquid Dispos                                                  | al Site within Tv                              | vo Miles                    | ☐ Yes                                                                 | ☑ No                                                     | Location                 |                                                                 |
|                                      |                                                                     |                                                | THOD OF CONST               |                                                                       |                                                          |                          |                                                                 |
| accordance v<br>standards sh         | with the standards<br>all also be followed<br>water well drillers r | recommended of the for public water to Environ | n the California De         | epartment of W<br>vices within 30                                     | ater Resources B                                         | sulletin No. 74-81       | ne method shall be in<br>and 74-90. Title 22<br>ruct or destroy |
| Monitoring wells wentonite plug will | vill be constructed with 2<br>be placed and hydrated                | 2″ or 4″ flush thread<br>d with clean water. T | PVC, filter pack will be cl | lean washed sand a<br>will consist of neat<br>ill finish the installa | and placed with tremie<br>cement with 5% bento<br>ation. | to at least 2' above the | slotted well screen, a 2-5' upward motion with tremi            |
| I have read the                      | nis application and                                                 | agree to comp                                  | y with all laws regu        |                                                                       |                                                          | rformed                  |                                                                 |
| Property Owner's                     |                                                                     | 11                                             | ,                           |                                                                       | D                                                        | ate                      |                                                                 |
| Signature<br>Print Property Ov       | woods Name                                                          | Baupsen                                        |                             |                                                                       | · //                                                     | 1/29/2021                |                                                                 |
|                                      | ROD                                                                 | ert Hamp                                       | son                         |                                                                       |                                                          |                          |                                                                 |
| C-57 Contractor's<br>Signature       | s X                                                                 |                                                | h                           |                                                                       | D                                                        | <sup>vate</sup> 12/13/2  | 021                                                             |
| Print Contractor's                   | s Name Ivan 1                                                       | Liovin                                         | <i></i>                     |                                                                       |                                                          |                          |                                                                 |
|                                      | For Office Use                                                      | Only DISPOS                                    | SITION OF PERMI             | T For Office                                                          | Use Only DISP                                            | OSITION OF PEF           | TIME                                                            |
| X Sent to Wa                         |                                                                     | , only 6101 0                                  | ornorror renam              | , 10,01100                                                            | Permit Number:                                           | 000440004                |                                                                 |
| ☐ Water Age                          | ncy conditions or rec                                               | commendations at                               | tached                      |                                                                       | Expiration Date:                                         | 6-13-2022                |                                                                 |
| ☐ Denied                             |                                                                     |                                                |                             |                                                                       | WP Number:                                               | WP003756                 | 4                                                               |
| Approved s                           | subject to the following                                            | ng:                                            |                             |                                                                       |                                                          | '                        |                                                                 |
| А. 🗆                                 |                                                                     | erations: (Inspect                             | ions are conducted M        |                                                                       |                                                          |                          | to make an inspection o cancel or reschedule                    |
|                                      | ☐ Prior to sealing                                                  | g of the annular sp                            | pace or filling of the c    | onductor casing.                                                      |                                                          |                          |                                                                 |
|                                      | ☐ After installation                                                | on of the surface p                            | rotective slab and pu       | ımping equipme                                                        | nt.                                                      |                          |                                                                 |
|                                      | ☐ After installation                                                | on of the surface f                            | eatures.                    |                                                                       |                                                          |                          |                                                                 |
|                                      | ☐ During destruction                                                | tion of wells, prior                           | to pouring the sealir       | ng material.                                                          |                                                          |                          |                                                                 |
| В. 💢                                 | Submit to the Divis                                                 | sion, within thirty (                          | 30) days after comple       | etion of work, a d                                                    | copy of:                                                 |                          |                                                                 |
|                                      | ★ Water Well Dri                                                    | ller's Report                                  | ☐ Bacterial Analy           | _                                                                     | rganic Chemical An                                       |                          | eneral Physical                                                 |
| 0                                    | Radiological A                                                      | nalysis                                        | ☐ Nitrate as Nitro          | ogen 🗌 Org                                                            | ganic Chemical Ana                                       | lysis 🗌 Ge               | eneral Mineral                                                  |
| Comments                             |                                                                     |                                                |                             |                                                                       |                                                          |                          |                                                                 |
|                                      |                                                                     |                                                |                             |                                                                       |                                                          |                          |                                                                 |
|                                      |                                                                     |                                                |                             |                                                                       | 1100-1-1                                                 |                          |                                                                 |
| 15                                   | F 05 U 6                                                            | E - 0" -                                       | les 0-1 - F 6/5             |                                                                       | F Off 11 C                                               | F0"                      | 0.1                                                             |
| Fee:                                 | For Office Use On                                                   | ly For Office L<br>FA Number:                  | ose Only For Offi           | ce Use Only<br>Record ID:                                             | For Office Use O                                         | nly For Office U         | PE Number:                                                      |
| 320.                                 |                                                                     | Decignated Emply                               |                             | Received Do                                                           |                                                          |                          | 4555                                                            |
| Late Fee:                            | □ Y □x N                                                            | Designated Emplo                               | jheri y                     | Received By:                                                          | joshua s                                                 |                          | Date: 11-30-21                                                  |
| Check One:                           | ☑ New                                                               | Transfer                                       | Reactivate                  | Changes (pleas                                                        | e specify): 10599                                        | 90                       |                                                                 |

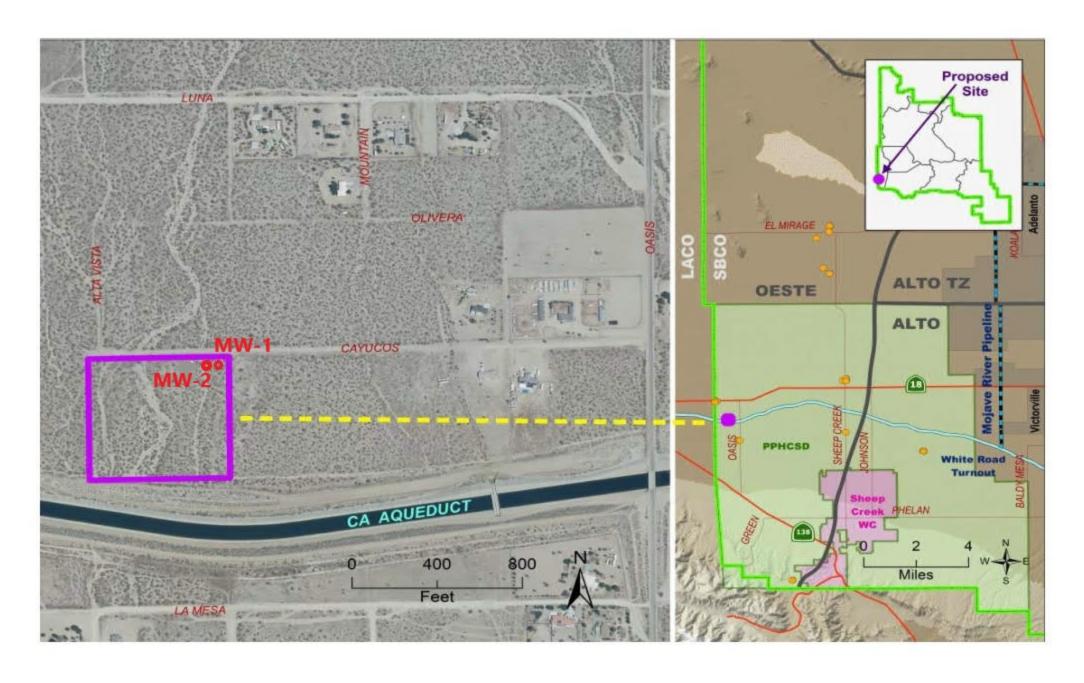



FIGURE 1. SITE LOCATION

## State of California

## Well Completion Report Form DWR 188 Complete 8/25/2023 WCR2019-016567

| Owner's Well Num                      | ber EM-36    | 6A/B/C       |                    |                 | Date Work   | Began  | 06/04/2019         |             | Date Wo                                 | rk Ended    | 06/06/2019    |        |
|---------------------------------------|--------------|--------------|--------------------|-----------------|-------------|--------|--------------------|-------------|-----------------------------------------|-------------|---------------|--------|
| Local Permit Agen                     | cy San Be    | rnardino Co  | unty D             | PH - Environm   | ental Healt | h Serv | ices Safe Drinking | g Wat       | ter Permit Section                      |             |               |        |
| Secondary Permit                      | Agency       |              |                    |                 | Permit N    | Numbe  | r 2019050241       |             | Pe                                      | ermit Date  | 05/20/2019    |        |
| Well Owner                            | (must rer    | main cor     | nfide              | ntial purs      | uant to     | Wate   | r Code 1375        | <b>i2</b> ) | Plann                                   | ed Use      | and Activity  |        |
| Name PHELAN                           | PINION HILI  | S COMMU      | NITY S             | SERVICES DIS    | STRICT,     |        |                    |             | Activity New                            | Well        |               |        |
| Mailing Address                       | 3896 El Mir  | rage Rd      |                    |                 |             |        |                    |             | Planned Use                             | Monitorir   | ng            |        |
| City Adelanto                         |              |              |                    |                 | State       | CA     | Zip 92301          | _           |                                         |             |               |        |
|                                       |              |              |                    |                 | Well        | Loc    | ation              |             |                                         |             |               |        |
| Address 3896                          | El Mirage RD |              |                    |                 |             |        |                    | AP          | N 0457-102-0                            | 6-0000      |               |        |
| City Adelanto                         |              |              | Zip                | 92301           | County      | San    | Bernardino         | Tov         | wnship 06 N                             |             |               |        |
| Latitude 34                           | 36           | 11.1599      | N.                 | Longitude       | -<br>-117   | 34     | 57.36 W            |             | nge 07 W                                |             |               |        |
| Deg.                                  |              | Sec.         | _                  | _               | Deg.        | Min.   | <br>Sec.           |             | ction 14                                |             |               |        |
| Dec. Lat. 34.603                      |              | <b>C</b> 00. |                    | Dec. Long.      | -117.5826   |        | <b>2</b> 00.       |             | seline Meridian                         | San Berna   | rdino         |        |
| Vertical Datum                        |              |              | 11.                | orizontal Datur |             |        |                    | '           | ound Surface Elev                       | ation       |               |        |
| _                                     |              |              |                    |                 |             |        |                    |             | evation Accuracy<br>evation Determinati | a Nathard   |               |        |
| Location Accuracy                     | >50 Ft       |              | Location<br>Method | n Determinatio  | on Other    |        | _                  | Ele         | valion Determinati                      | on wethou   | -             |        |
|                                       | Borel        | nole Info    | rmat               | ion             |             |        | Water              | Lev         | el and Yield                            | of Com      | pleted Well   |        |
| Orientation Ver                       | tical        |              |                    | Speci           | fy          |        | Depth to first wat | ter         | 50.5                                    | (Feet be    | elow surface) |        |
| Drilling Method                       | Sonic        |              | Drilling           | Fluid None      |             | —      | Depth to Static    |             |                                         | _           |               |        |
|                                       |              |              |                    |                 |             |        | Water Level        |             | (Feet)                                  | Date Mea    |               |        |
| Total Depth of Bor                    | ring 130     |              |                    | Feet            |             |        | Estimated Yield*   | _           | (GPM)                                   | Test Type   |               |        |
| Total Depth of Co                     | mpleted Well | 99           |                    | Feet            |             |        | Test Length        |             | (Hours)                                 | Total Dra   |               | (feet) |
| ·                                     | <u> </u>     |              |                    |                 |             | L      | "May not be repr   | esen        | tative of a well's lo                   | ng term yie | ia.           |        |
|                                       |              |              |                    | Ge              | ologic l    | Log -  | Free Form          |             |                                         |             |               |        |
| Depth from<br>Surface<br>Feet to Feet |              |              |                    |                 |             |        | Description        |             |                                         |             |               |        |

130

See attached.

|             | Casings |      |             |          |                                                  |                               |                                 |                 |                                 |             |  |  |  |
|-------------|---------|------|-------------|----------|--------------------------------------------------|-------------------------------|---------------------------------|-----------------|---------------------------------|-------------|--|--|--|
| Casing<br># | •   •   |      | Casing Type | Material | Casings Specificatons                            | Wall<br>Thickness<br>(inches) | Outside<br>Diameter<br>(inches) | Screen<br>Type  | Slot Size<br>if any<br>(inches) | Description |  |  |  |
| 1           | 0       | 61   | Blank       | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           |                 |                                 | SCH 40      |  |  |  |
| 1           | 61      | 65.5 | Screen      | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           | Milled<br>Slots | 0.01                            | SCH 40      |  |  |  |
| 1           | 65.5    | 66   | Blank       | PVC      | VC OD: 2.375 in.   0.218<br>Thickness: 0.218 in. |                               | 2.375                           |                 |                                 | End Cap     |  |  |  |
| 2           | 0       | 83   | Blank       | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218 2.375                   |                                 |                 | SCH 40                          |             |  |  |  |
| 2           | 83      | 87.5 | Screen      | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           | Milled<br>Slots | 0.02                            | SCH 40      |  |  |  |
| 2           | 87.5    | 88   | Blank       | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           |                 |                                 | End Cap     |  |  |  |
| 3           | 0       | 94   | Blank       | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           |                 |                                 | SCH 40      |  |  |  |
| 3           | 94      | 98.5 | Screen      | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           | Milled<br>Slots | 0.02                            | SCH 40      |  |  |  |
| 3           | 98.5    | 99   | Blank       | PVC      | OD: 2.375 in.  <br>Thickness: 0.218 in.          | 0.218                         | 2.375                           |                 |                                 | End Cap     |  |  |  |

|                                 | Annular Material |             |                             |                  |             |  |  |  |  |  |  |  |
|---------------------------------|------------------|-------------|-----------------------------|------------------|-------------|--|--|--|--|--|--|--|
| Depth from Surface Feet to Feet |                  | Fill        | Fill Type Details           | Filter Pack Size | Description |  |  |  |  |  |  |  |
| 0                               | 3                | Other Fill  | See description.            |                  | Concrete    |  |  |  |  |  |  |  |
| 3                               | 56               | Cement      | Portland Cement/Neat Cement |                  |             |  |  |  |  |  |  |  |
| 56                              | 59               | Bentonite   | Other Bentonite             |                  |             |  |  |  |  |  |  |  |
| 59                              | 68               | Filter Pack | Other Gravel Pack           | #1C              | Silica Sand |  |  |  |  |  |  |  |
| 68                              | 81               | Bentonite   | Other Bentonite             |                  |             |  |  |  |  |  |  |  |
| 81                              | 90               | Filter Pack | Other Gravel Pack           | #2/16            | Silica Sand |  |  |  |  |  |  |  |
| 90                              | 93               | Bentonite   | Other Bentonite             |                  |             |  |  |  |  |  |  |  |
| 93                              | 100              | Filter Pack | Other Gravel Pack           | #2/16            | Silica Sand |  |  |  |  |  |  |  |
| 100                             | 130              | Bentonite   | Other Bentonite             |                  |             |  |  |  |  |  |  |  |

| Other Observations: |  |  |
|---------------------|--|--|
|                     |  |  |

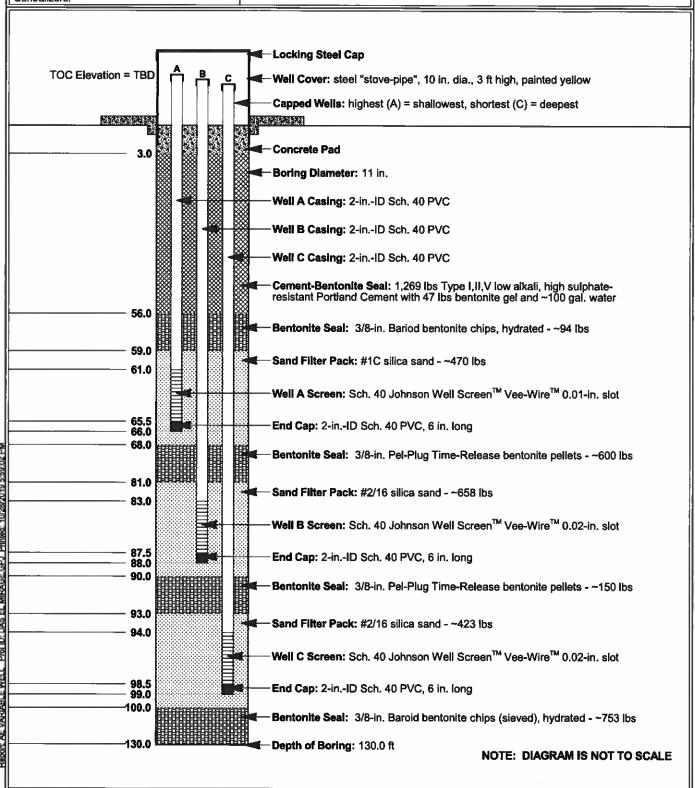
|                          | Borehole Specifications |                            |  |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------|----------------------------|--|--|--|--|--|--|--|--|--|
| Depth<br>Surf<br>Feet to | ace                     | Borehole Diameter (inches) |  |  |  |  |  |  |  |  |  |
| 0                        | 130                     | 11                         |  |  |  |  |  |  |  |  |  |

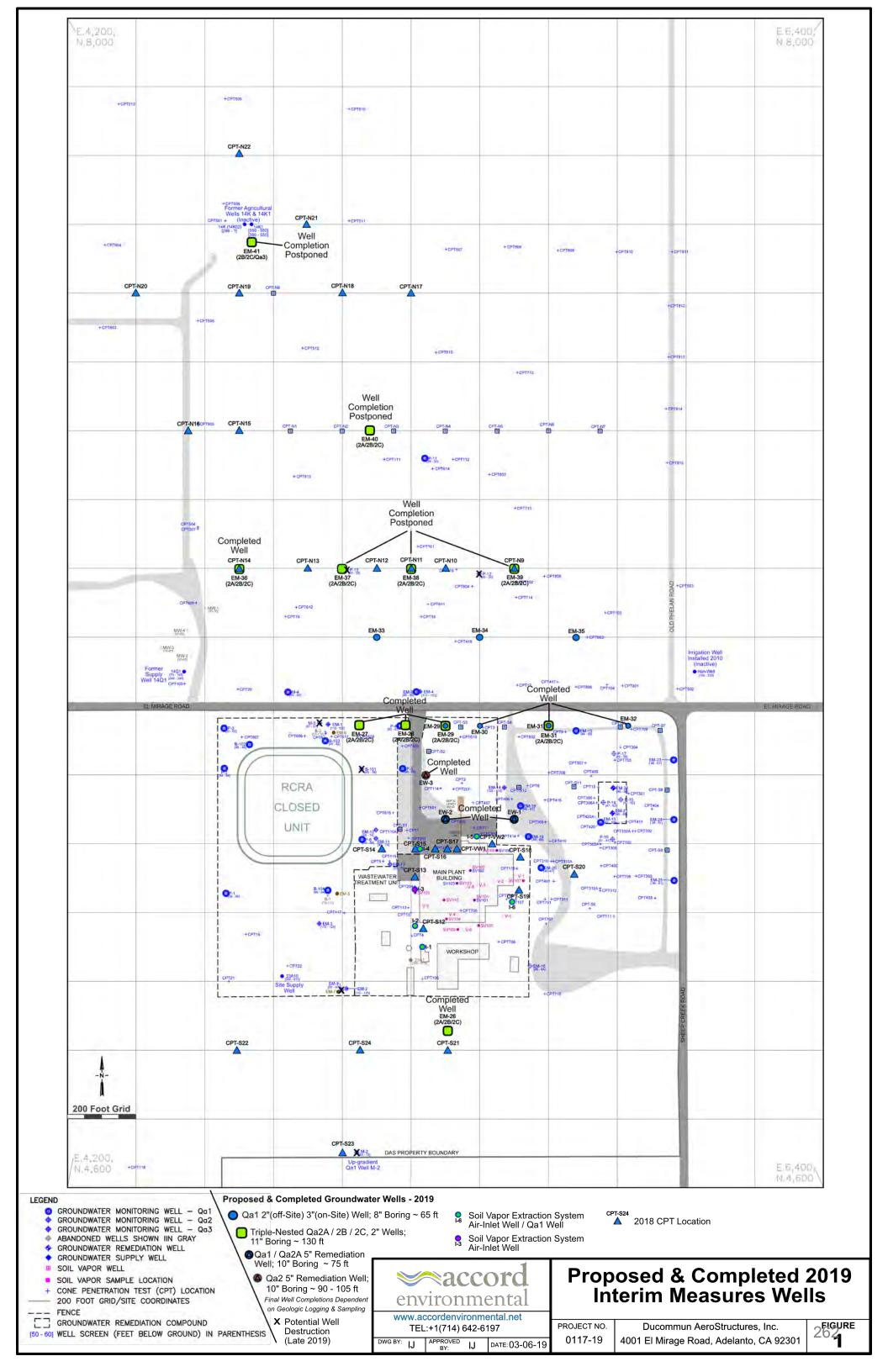
|   |                                                                                                              | Certification Statement                                                                                                    |             |       |       |  |  |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|--|--|--|--|--|--|--|
| 1 | I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief |                                                                                                                            |             |       |       |  |  |  |  |  |  |  |
|   | Name                                                                                                         | Name CASCADE DRILLING L P                                                                                                  |             |       |       |  |  |  |  |  |  |  |
| ┨ |                                                                                                              | Person, Firm or Corporation                                                                                                |             |       |       |  |  |  |  |  |  |  |
| J |                                                                                                              | P O BOX 1184                                                                                                               | WOODINVILLE | WA    | 98072 |  |  |  |  |  |  |  |
|   |                                                                                                              | Address                                                                                                                    | City        | State | Zip   |  |  |  |  |  |  |  |
|   | Signed                                                                                                       | igned electronic signature received 11/19/2019 938110  C-57 Licensed Water Well Contractor Date Signed C-57 License Number |             |       |       |  |  |  |  |  |  |  |

| Attachments                                                       |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| map.pdf - Location Map                                            |  |  |  |  |  |  |  |  |
| EM36A,B,C Construction.pdf - Well Construction Diagram            |  |  |  |  |  |  |  |  |
| /WellReport_20191120_142449.pdf - WCR Final - Outdated            |  |  |  |  |  |  |  |  |
| /WellReport_20191120_142450.pdf - WCR Final - Redacted - Outdated |  |  |  |  |  |  |  |  |

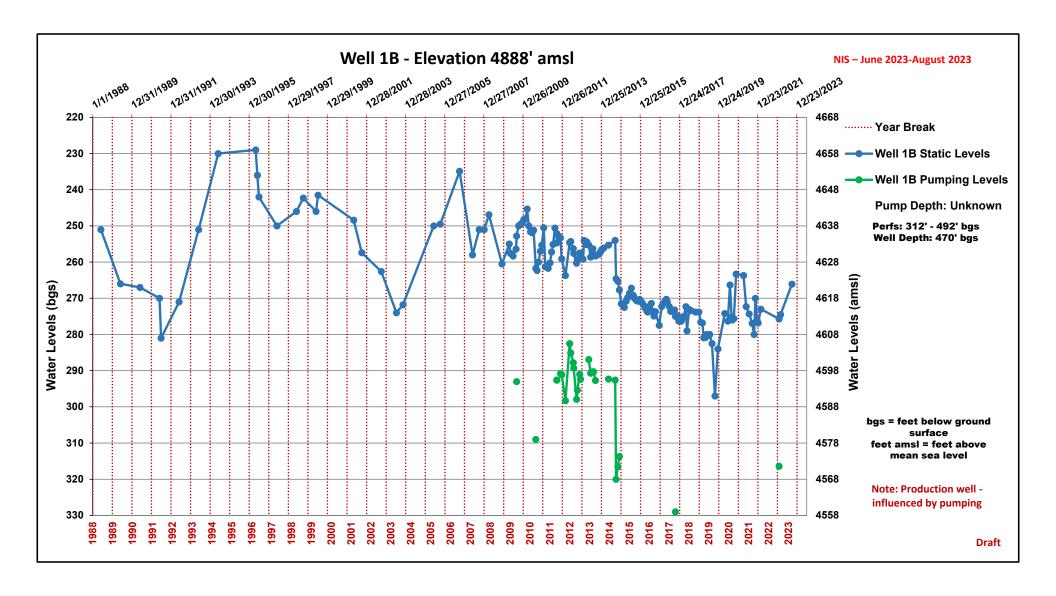
|                      | DWR Use Only |                       |             |   |        |         |         |            |                |  |  |  |
|----------------------|--------------|-----------------------|-------------|---|--------|---------|---------|------------|----------------|--|--|--|
|                      | CSG#         | G # State Well Number |             |   | Site ( | ode     | Loca    | al Well N  | umber          |  |  |  |
|                      | 1            | 06N07W14              | A           |   |        |         |         |            |                |  |  |  |
|                      | 2            | 06N07W14              |             |   |        | В       |         |            |                |  |  |  |
|                      | 3            | 06N07W14              |             |   |        | С       |         |            |                |  |  |  |
| Latitude Deg/Min/Sec |              |                       |             | N |        | ongitu  | de Deg  | /Min/S4    | W              |  |  |  |
|                      | La           | illude De             | g/Willi/Sec | • |        | .ongitu | ide Deg | /IVIIII/36 | <del>5</del> 0 |  |  |  |

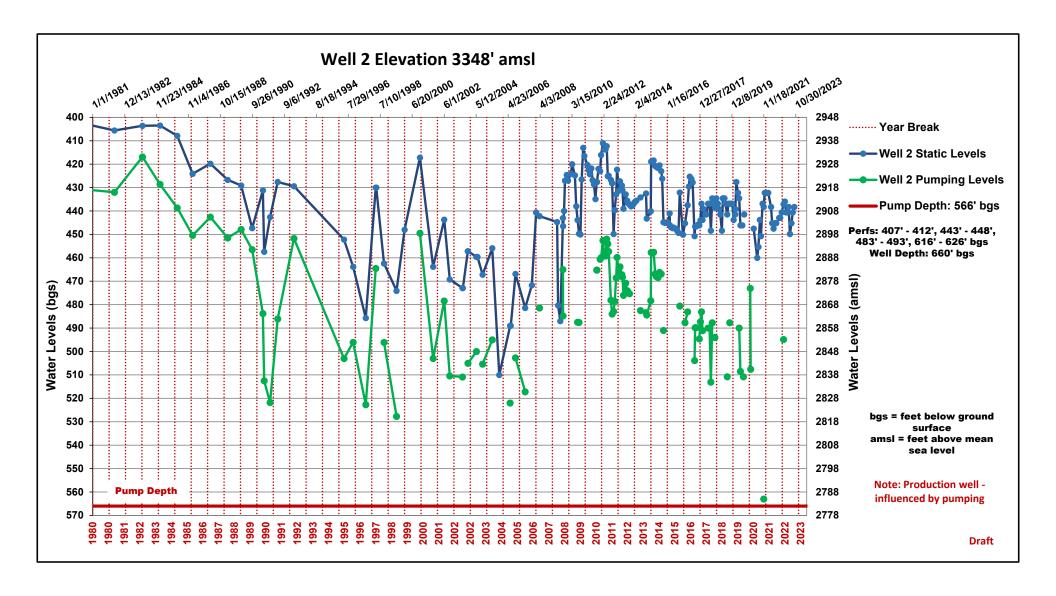
TRS: 06N07W14R007S APN: 0457-102-06-0000

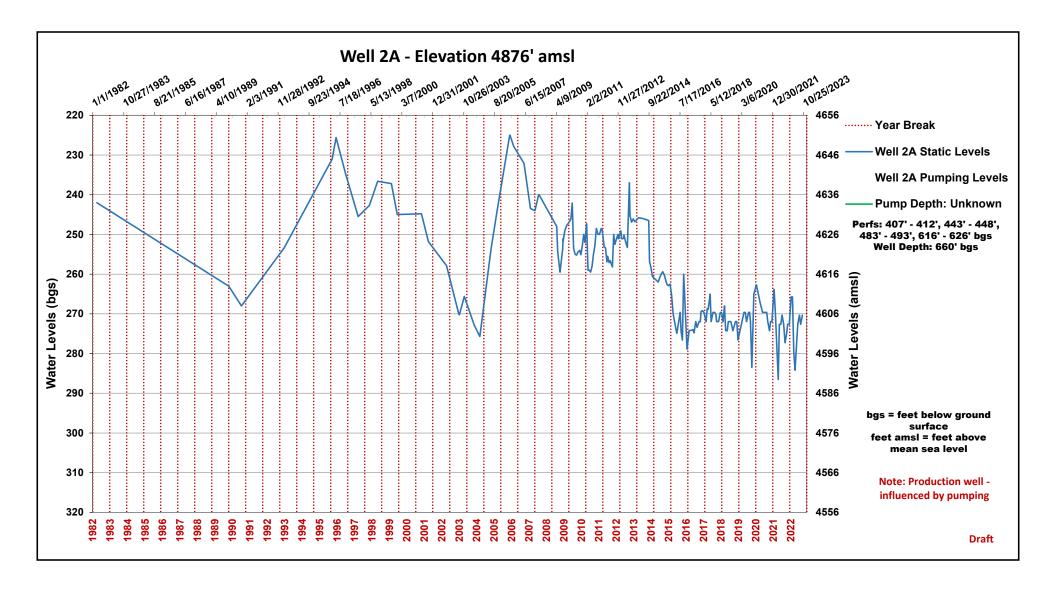


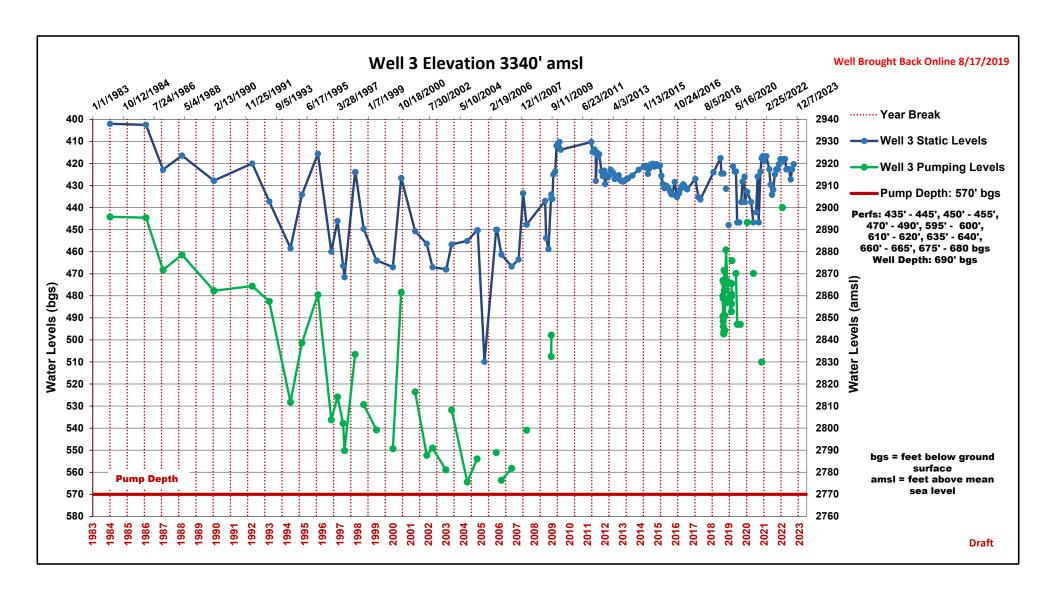


PROJECT: DAS El Mirage - 0117-PIII-9-3

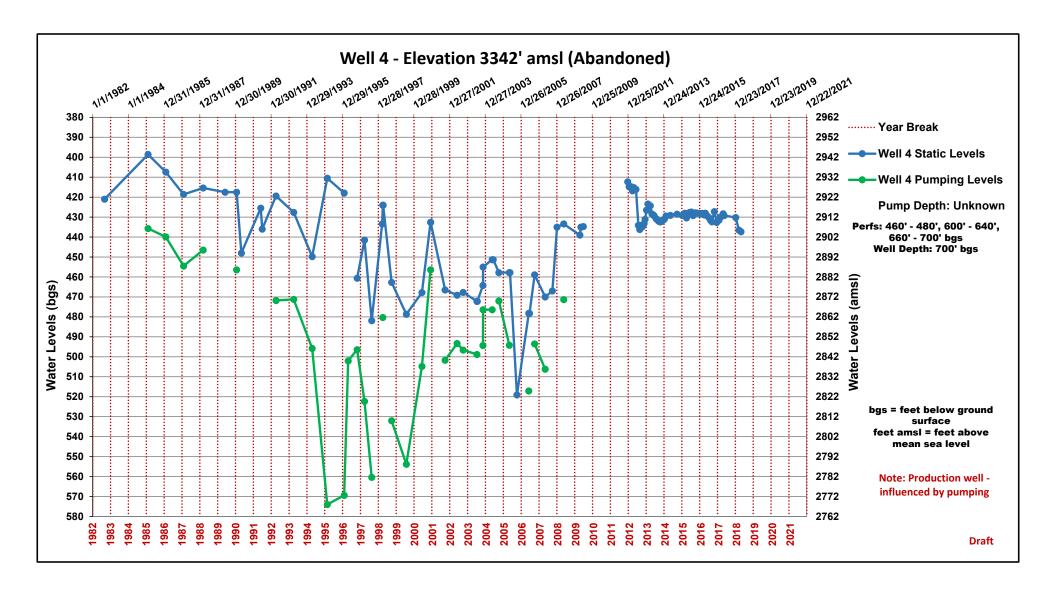
LOCATION: 4001 El Mirage Road, CA 92301

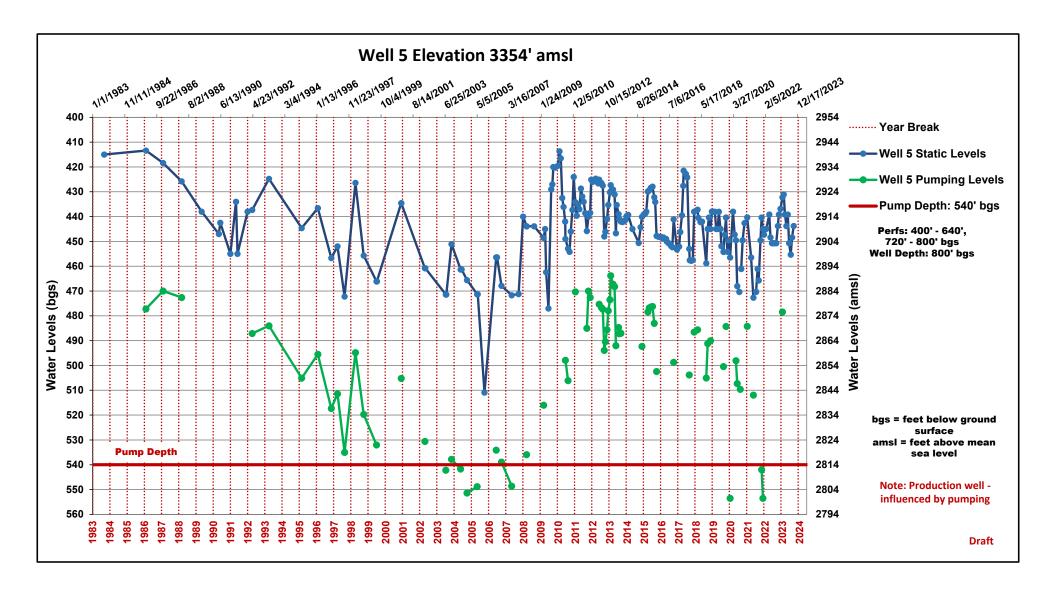

## WELL CONSTRUCTION RECORD FOR EM-36A/B/C

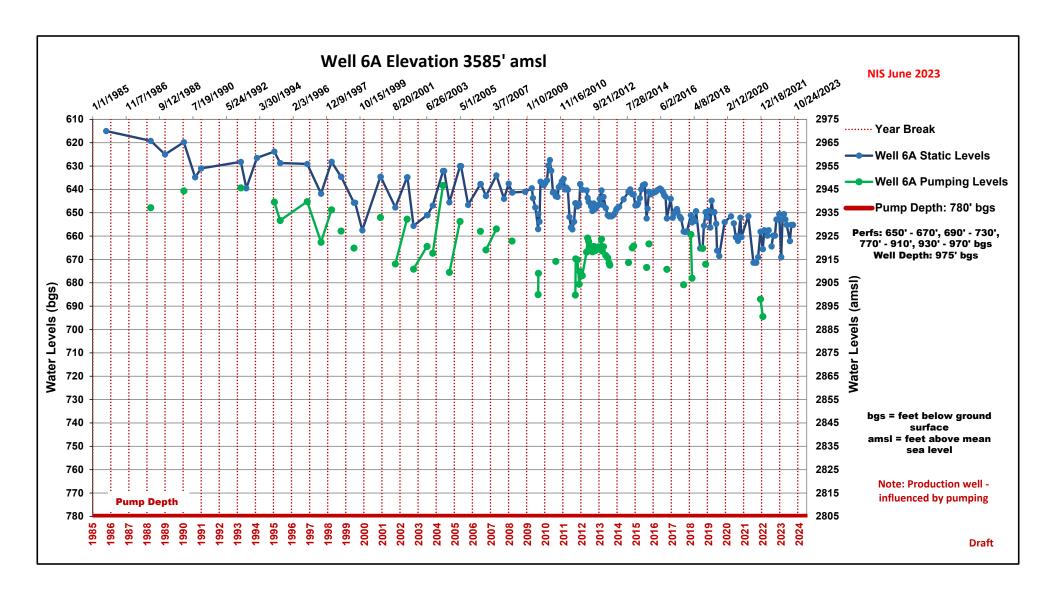

| Date(s)<br>Installed:      | 6/4 - 6/5/19            | Installed<br>By:      | Cascade Drilling LP          | Observed<br>By:        | I. Jones, CHG 863                  |
|----------------------------|-------------------------|-----------------------|------------------------------|------------------------|------------------------------------|
| Response<br>Zone(s):       | 59-68, 81-90, 93-100 ft | Screened Interval(s): | 61-65.5, 83-88.5, 94-98.5 ft | Total Depth of Boring: | 130.0 ft Total Depth 66, 88, 99 ft |
| Depths of<br>Centralizers: | 10, 40, 55, 80, 92.5 ft | Notes:                |                              |                        |                                    |

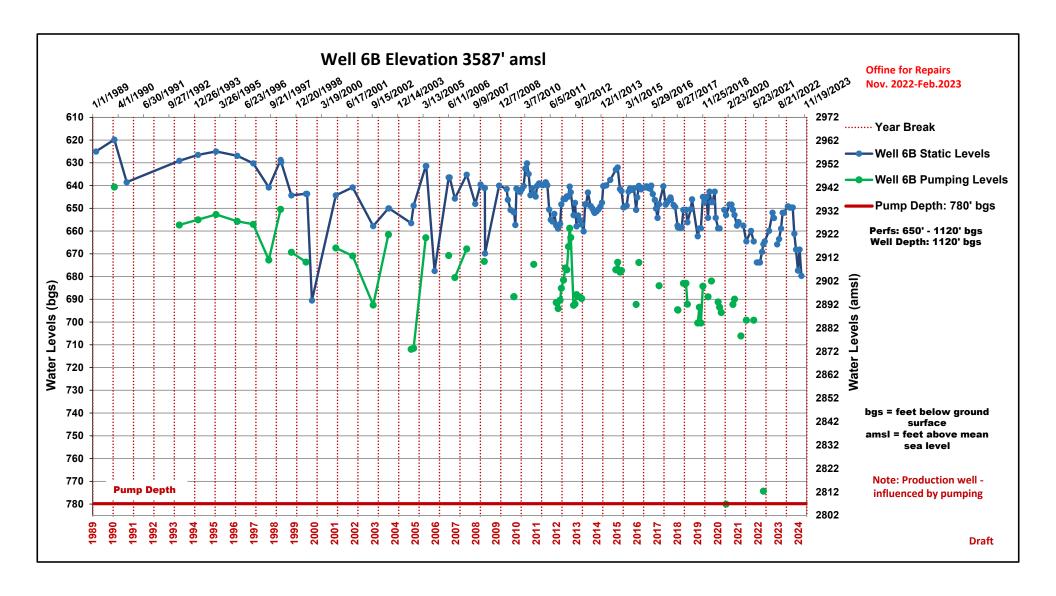


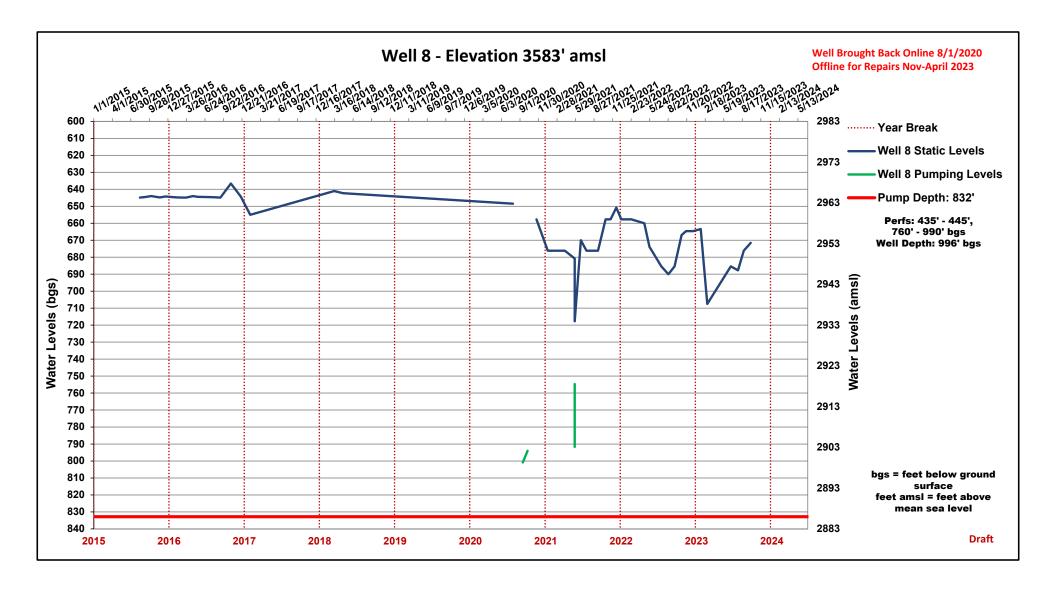



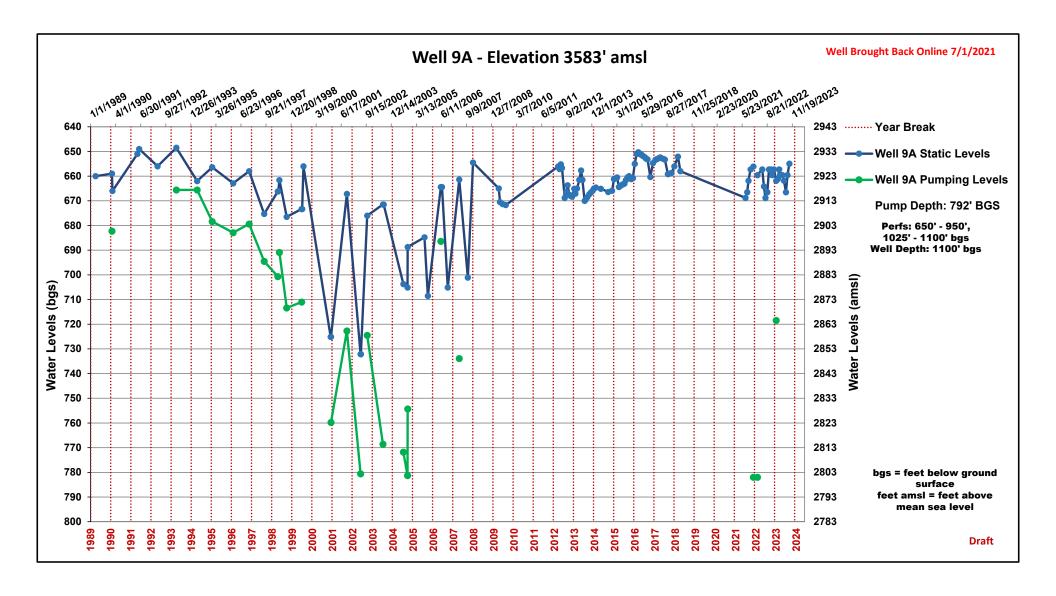


## Hydrographs

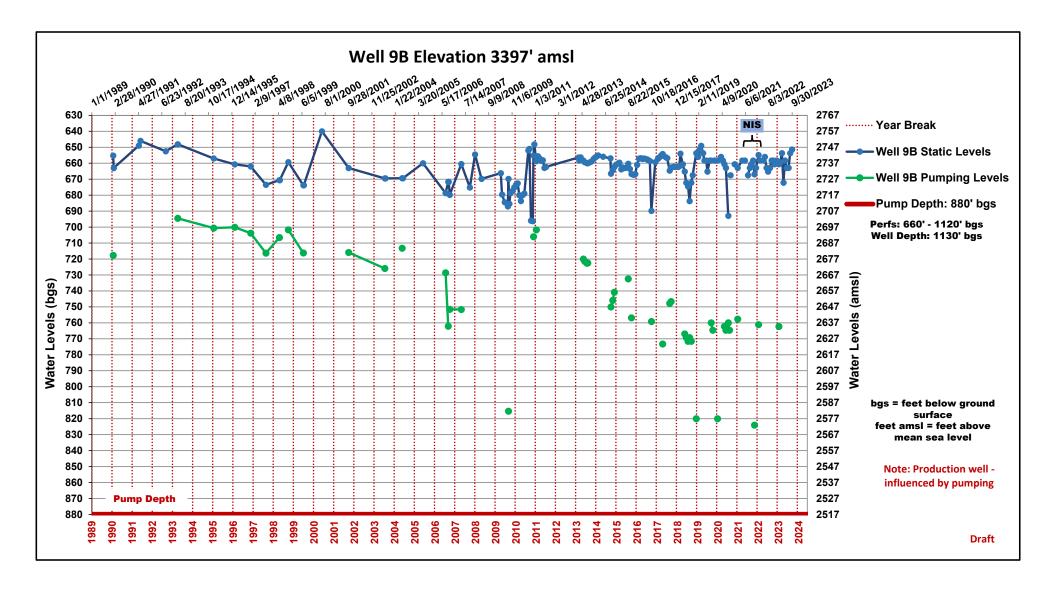


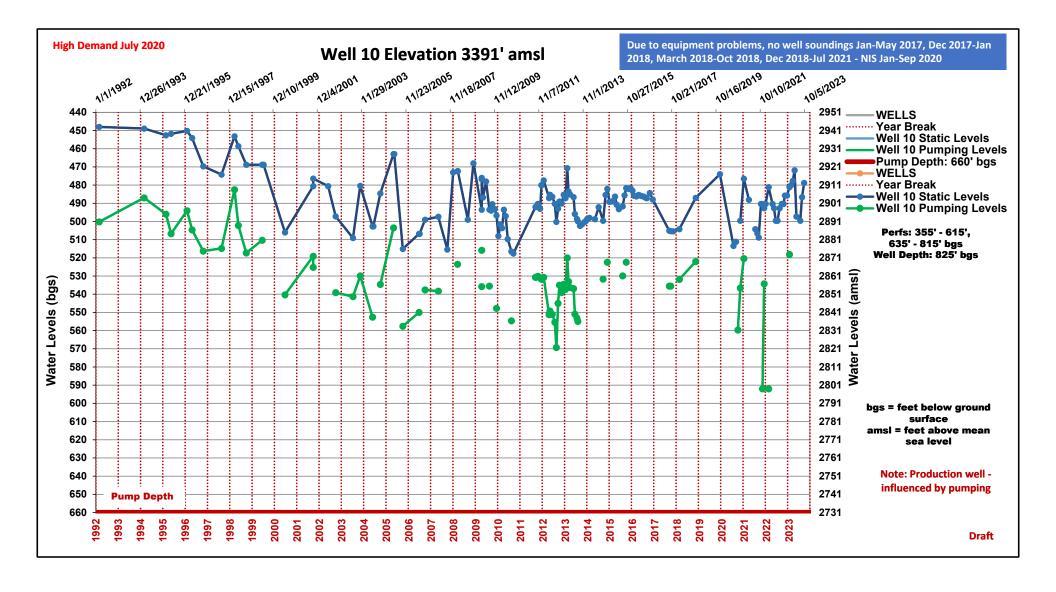



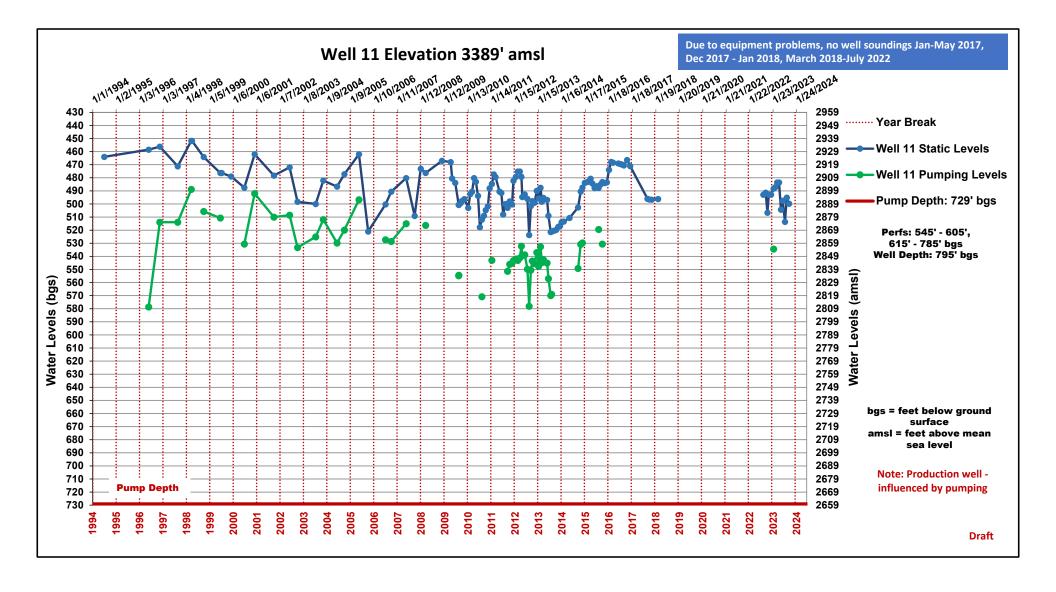



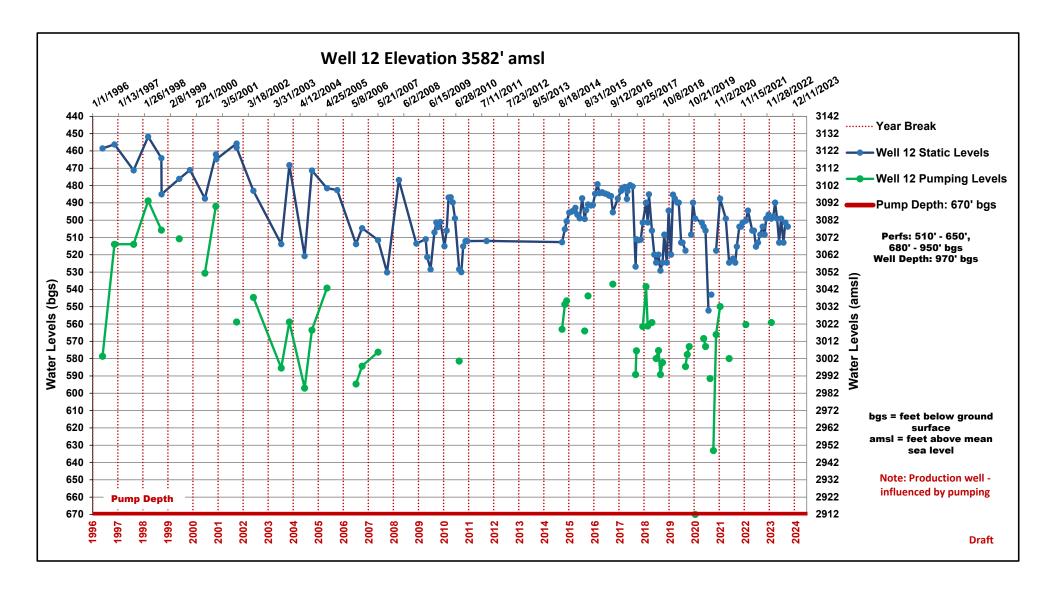



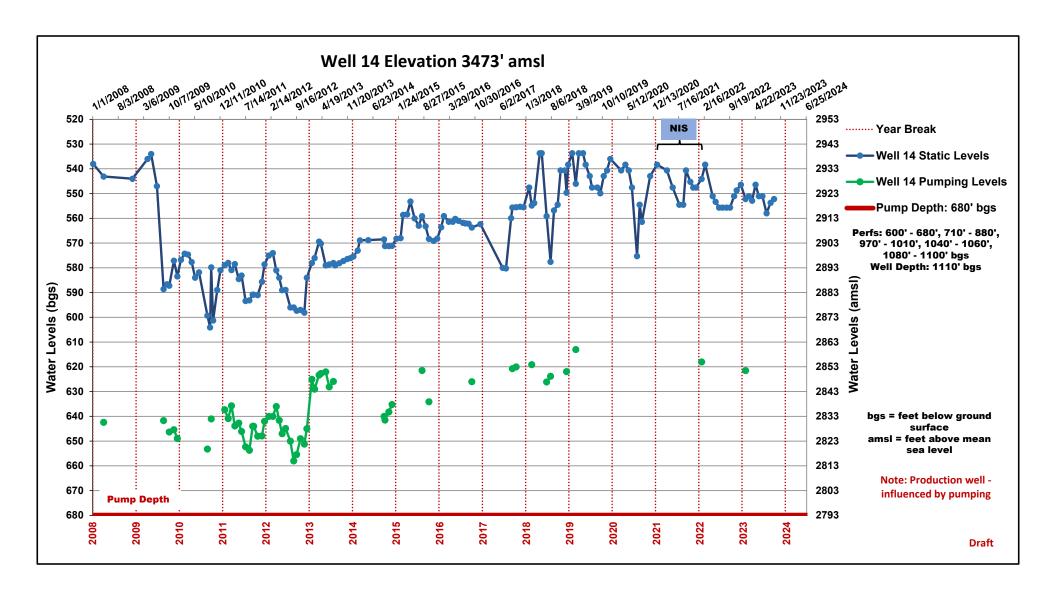



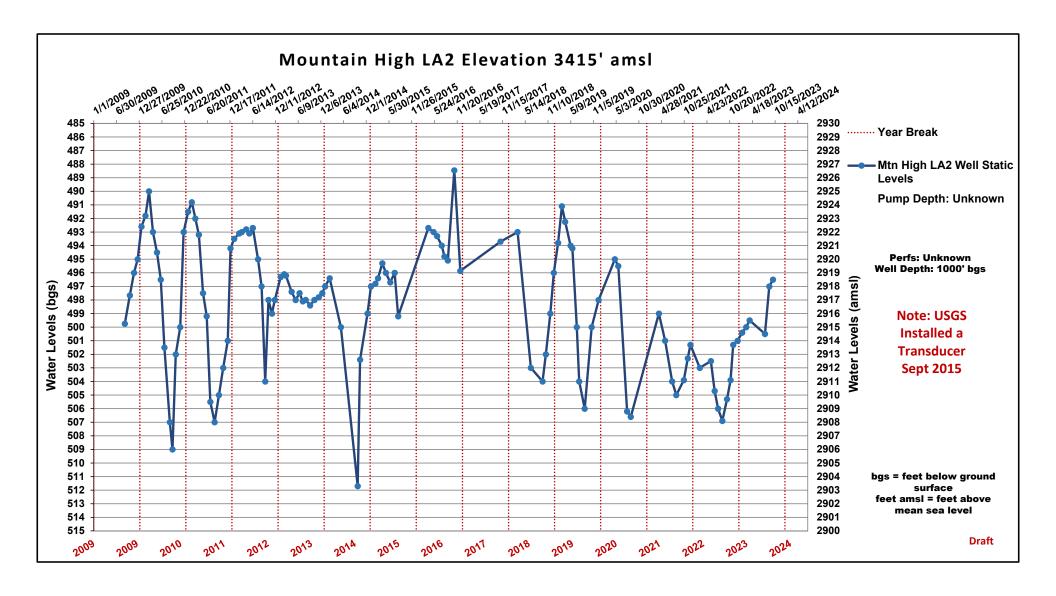



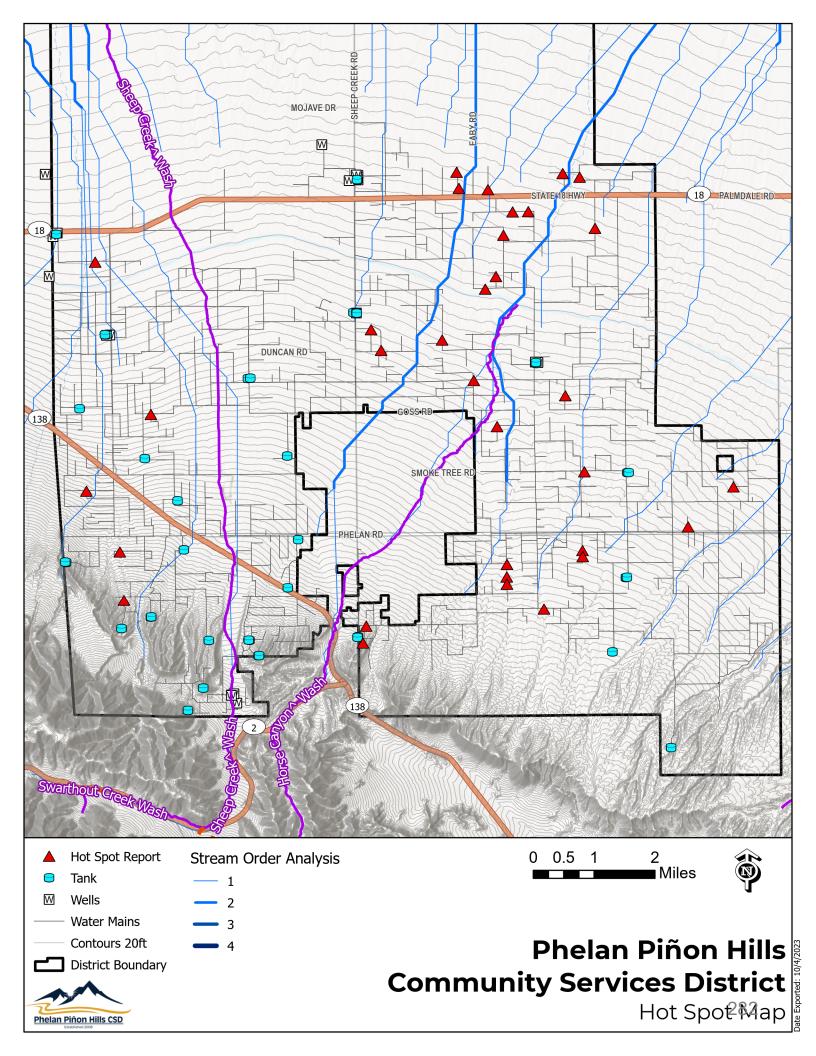














# Hot Spots Map

